Interbody Cage Devices

Study Design. A literature review was conducted of basic science research and clinical experiences describing the use of interbody cage devices for the management of degenerative spinal abnormalities. Objectives. To summarize current knowledge regarding the use of interbody fusion cages. Summary of Background Data. Degenerative conditions of the lumbar and cervical spine are a major societal expense and a leading cause of disability. Fusion surgery may be used to treat patients with some of these conditions. During the past decade, interbody cages have been popularized as a useful fusion technique with high rates of clinical and radiographic success reported. Cages may be implanted using a variety of surgical approaches to the disc space and can be used alone or with supplemental posterior fixation. Methods. A literature review of biomechanical, biologic, and clinical studies of threaded interbody cages was performed. Results. Interbody cages have been shown to successfully promote fusion in a variety of animal models. In biomechanical studies, anteriorly placed threaded cages significantly stabilize the motion segment in all directions except extension. Posteriorly placed cages provide less stability as a result of the facetectomy required for placement of an appropriately sized device. Successful clinical and radiographic results have been reported with the use of interbody cages. Most reported cage failures are the result of technical difficulties with implantation or poor patient selection. Accurate radiographic assessment of fusion in the presence of a metal interbody cage remains challenging, and studies evaluating alternate biomaterial cages are underway. Conclusion. Interbody cages are a useful technique for achieving spinal fusion and have been shown to have an acceptable clinical success rate in appropriately selected patients.

[1]  A. Tencer,et al.  Biomechanical Properties of Threaded Inserts for Lumbar Interbody Spinal Fusion , 1995, Spine.

[2]  G. Matgé Cervical Cage Fusion with 5 Different Implants: 250 Cases , 2002, Acta Neurochirurgica.

[3]  L. Lenke,et al.  Mesh Cages in Idiopathic Scoliosis in Adolescents , 2002, Clinical orthopaedics and related research.

[4]  L. Claes,et al.  Subsidence Resulting From Simulated Postoperative Neck Movements: An In Vitro Investigation With a New Cervical Fusion Cage , 2000, Spine.

[5]  T. Whitecloud,et al.  Degenerative conditions of the lumbar spine treated with intervertebral titanium cages and posterior instrumentation for circumferential fusion. , 1998, Journal of spinal disorders.

[6]  D N Kunz,et al.  Posterior Lumbar Interbody Fusion: A Biomechanical Comparison, Including a New Threaded Cage , 1997, Spine.

[7]  S. Boden,et al.  The Use of rhBMP-2 in Interbody Fusion Cages: Definitive Evidence of Osteoinduction in Humans: A Preliminary Report , 2000, Spine.

[8]  D. Mahvi,et al.  Laparoscopic lumbar spinal fusion: the role of the general surgeon. , 2000, Journal of laparoendoscopic & advanced surgical techniques. Part A.

[9]  S. Agazzi,et al.  Posterior lumbar interbody fusion with cages: an independent review of 71 cases. , 1999, Journal of neurosurgery.

[10]  J. Brantigan,et al.  Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial. , 2000, Spine.

[11]  W. J. Elias,et al.  Complications of posterior lumbar interbody fusion when using a titanium threaded cage device. , 2000, Journal of neurosurgery.

[12]  D. Togawa,et al.  Bone Graft Incorporation in Radiographically Successful Human Intervertebral Body Fusion Cages , 2001, Spine.

[13]  C D Ray,et al.  Threaded Titanium Cages for Lumbar Interbody Fusions , 1997, Spine.

[14]  N P Haas,et al.  Biomechanical Comparison of Cervical Spine Interbody Fusion Cages , 2001, Spine.

[15]  P. McAfee,et al.  Laparoscopic fusion of the lumbar spine: minimally invasive spine surgery. A prospective multicenter study evaluating open and laparoscopic lumbar fusion. , 1999, Spine.

[16]  LTC William R. Klemme,et al.  Lumbar Sagittal Contour After Posterior Interbody Fusion: Threaded Devices Alone Versus Vertical Cages Plus Posterior Instrumentation , 2001, Spine.

[17]  Martijn van Dijk,et al.  The Effect of Cage Stiffness on the Rate of Lumbar Interbody Fusion: An In Vivo Model Using Poly(L-Lactic Acid) and Titanium Cages , 2002, Spine.

[18]  T. Zdeblick,et al.  A Prospective Comparison of Surgical Approach for Anterior L4–L5 Fusion: Laparoscopic Versus Mini Anterior Lumbar Interbody Fusion , 2000, Spine.

[19]  S. L. Griffith,et al.  Revision strategies for salvaging or improving failed cylindrical cages. , 1999, Spine.

[20]  A. Minami,et al.  Biomechanical Evaluation of Stand-Alone Interbody Fusion Cages in the Cervical Spine , 2001, Spine.

[21]  A. Cigliano,et al.  Preliminary experience with anterior cervical microdiscectomy and interbody titanium cage fusion (Novus CT-Ti) in patients with cervical disc disease. , 2000, Surgical neurology.

[22]  Thomas R. Oxland,et al.  Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density , 1998 .

[23]  L. Nolte,et al.  A Comparative Biomechanical Investigation of Anterior Lumbar Interbody Cages: Central and Bilateral Approaches* , 2000, The Journal of bone and joint surgery. American volume.

[24]  J. Abitbol,et al.  Complications and strategies for salvage of intervertebral fixation devices. , 2002, The Orthopedic clinics of North America.

[25]  Bryan W Cunningham,et al.  Anterior BAK Instrumentation and Fusion: Complete Versus Partial Discectomy , 2002, Clinical orthopaedics and related research.

[26]  L. Nolte,et al.  The role of supplemental translaminar screws in anterior lumbar interbody fixation: a biomechanical study , 1998, European Spine Journal.

[27]  P. Mummaneni,et al.  Transforaminal Lumbar Interbody Fusion: Technique, Complications, and Early Results , 2001, Neurosurgery.

[28]  Thomas Mittlmeier,et al.  Influence of cage design on interbody fusion in a sheep cervical spine model. , 2002, Journal of neurosurgery.

[29]  L. Claes,et al.  Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading. , 1999, Journal of neurosurgery.

[30]  I. Lieberman,et al.  Transperitoneal laparoscopic exposure for lumbar interbody fusion. , 2000, Spine.

[31]  D. Wise,et al.  Biomechanical Analysis of Biodegradable Interbody Fusion Cages Augmented With Poly(Propylene Glycol-co-Fumaric Acid) , 2002, Spine.

[32]  S. L. Griffith,et al.  A Prospective Randomized Multicenter Clinical Evaluation of an Anterior Cervical Fusion Cage , 2000, Spine.

[33]  S. L. Griffith,et al.  Four-Year Follow-up Results of Lumbar Spine Arthrodesis Using the Bagby and Kuslich Lumbar Fusion Cage , 2000, Spine.