Aberrant EEG responses to gamma-frequency visual stimulation in schizophrenia

Disturbance in the integration of visual information is one of the hallmarks of schizophrenia. In the spatial domain, visual integration is compromised, resulting in impaired perceptual grouping and contour integration. In the time domain, in contrast, visual integration is enhanced, as manifested by increased backward masking and lower ability of patients to detect successively presented visual stimuli as asynchronous. There is much evidence that integrative processes in the brain are supported by dynamic synchronization, or phase-locking, of neural firing. In particular, synchrony in the gamma band (>30 Hz) has been related to local visual information binding whereas synchrony in lower frequencies has been linked to global-scale integration. We recorded EEG signals evoked by steady-state gamma-frequency (40 Hz) photic stimulation in order to directly test the phase-locking of neural responses in schizophrenia. Compared with healthy control subjects, patients showed higher phase-locking of early evoked activity in the gamma band (36-44 Hz) over the posterior cortex, but lower phase-locking in theta (4-8 Hz), alpha (8-13 Hz) and beta (13-24 Hz) frequencies over the anterior cortex. Phase-locking of evoked responses separated schizophrenia and control subjects with accuracy of 86%. This result suggests that schizophrenia is associated with an enhanced early low-level integration in the visual cortex but a deficient high-level integration of visual information within the brain global workspace.

[1]  S. Potkin,et al.  EEG alpha photic driving abnormalities in chronic schizophrenia , 1989, Psychiatry Research.

[2]  Manuel Schabus,et al.  Phase-locked alpha and theta oscillations generate the P1-N1 complex and are related to memory performance. , 2004, Brain research. Cognitive brain research.

[3]  R A Koeppe,et al.  PET study of greater visual activation in schizophrenia. , 1997, The American journal of psychiatry.

[4]  S. Tobimatsu,et al.  Studies of human visual pathophysiology with visual evoked potentials , 2006, Clinical Neurophysiology.

[5]  B. Schwartz,et al.  Visual processing deficits in acute and chronic schizophrenics. , 1982, Biological psychiatry.

[6]  C. Gray The Temporal Correlation Hypothesis of Visual Feature Integration Still Alive and Well , 1999, Neuron.

[7]  W. A. Phillips,et al.  Where the rubber meets the road: The importance of implementation , 2003, Behavioral and Brain Sciences.

[8]  T. Demiralp,et al.  Human EEG gamma oscillations in neuropsychiatric disorders , 2005, Clinical Neurophysiology.

[9]  E. Gordon,et al.  Synchronous Gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia , 2003, Brain Research Reviews.

[10]  C A Sandman,et al.  Topographic Analysis of EEG Photic Driving in Normal and Schizophrenic Subjects , 1995, Clinical EEG.

[11]  J. Klosterkötter,et al.  Basic symptoms in early psychotic and depressive disorders. , 2007, The British journal of psychiatry. Supplement.

[12]  J. Habbema,et al.  Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. , 2001, Journal of clinical epidemiology.

[13]  J. Palva,et al.  New vistas for α-frequency band oscillations , 2007, Trends in Neurosciences.

[14]  Frank E. Harrell,et al.  Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis , 2001 .

[15]  M. Hankins,et al.  Neurobiology of retinal dopamine in relation to degenerative states of the tissue , 1997, Vision Research.

[16]  Margaret T May,et al.  Regression Modelling Strategies with Applications to Linear Models, Logistic Regression, and Survival Analysis. Frank E Harrell Jr, New York: Springer 2001, pp. 568, $79.95. ISBN 0-387-95232-2. , 2002 .

[17]  A. Tzelepi,et al.  Functional properties of sub-bands of oscillatory brain waves to pattern visual stimulation in man , 2000, Clinical Neurophysiology.

[18]  T. Baldeweg,et al.  γ-band electroencephalographic oscillations in a patient with somatic hallucinations , 1998, The Lancet.

[19]  Schwartz Bd,et al.  Visual processing deficits in acute and chronic schizophrenics. , 1982 .

[20]  D. Regan Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine , 1989 .

[21]  S. Woods,et al.  Chlorpromazine equivalent doses for the newer atypical antipsychotics. , 2003, The Journal of clinical psychiatry.

[22]  A. Keil,et al.  Aberrant brain dynamics in schizophrenia: delayed buildup and prolonged decay of the visual steady-state response. , 2004, Brain research. Cognitive brain research.

[23]  A. von Stein,et al.  Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[24]  John J. Foxe,et al.  Early visual processing deficits in schizophrenia: impaired P1 generation revealed by high-density electrical mapping , 2001, Neuroreport.

[25]  E Halgren,et al.  Rapid distributed fronto-parieto-occipital processing stages during working memory in humans. , 2002, Cerebral cortex.

[26]  R. Eckhorn,et al.  Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. , 2004, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[27]  M. Bennett,et al.  Electrical Coupling and Neuronal Synchronization in the Mammalian Brain , 2004, Neuron.

[28]  D. Barch The cognitive neuroscience of schizophrenia. , 2005, Annual review of clinical psychology.

[29]  J. Klosterkötter,et al.  Diagnosing schizophrenia in the initial prodromal phase , 2000, Schizophrenia Research.

[30]  B. Moghaddam,et al.  NMDA Receptor Hypofunction Produces Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons , 2007, The Journal of Neuroscience.

[31]  François Mauguière,et al.  Human lateral geniculate nucleus and visual cortex respond to screen flicker , 2003, Annals of neurology.

[32]  P. Uhlhaas,et al.  Perceptual anomalies in schizophrenia: integrating phenomenology and cognitive neuroscience. , 2006, Schizophrenia bulletin.

[33]  P. Renshaw,et al.  Greater hemodynamic response to photic stimulation in schizophrenic patients: an echo planar MRI study. , 1994, The American journal of psychiatry.

[34]  Y. Wada,et al.  Abnormal photic driving responses in never-medicated schizophrenia patients. , 1995, Schizophrenia bulletin.

[35]  K. H. Mild,et al.  Steady-state visual evoked potentials to computer monitor flicker. , 1998, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[36]  B. O’Donnell,et al.  Steady state responses: electrophysiological assessment of sensory function in schizophrenia. , 2009, Schizophrenia bulletin.

[37]  M. Scherg,et al.  Intracerebral Sources of Human Auditory Steady-State Responses , 2004, Brain Topography.

[38]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[39]  L. H. Finkel,et al.  N-methyl-d-aspartic acid receptor antagonist–induced frequency oscillations in mice recreate pattern of electrophysiological deficits in schizophrenia , 2009, Neuroscience.

[40]  S. Kapur,et al.  Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation. , 2002, Archives of general psychiatry.

[41]  A. Cichocki,et al.  Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives , 2010, Progress in Neurobiology.

[42]  W. Slaghuis,et al.  Luminance flicker sensitivity in positive- and negative-symptom schizophrenia , 2001, Experimental Brain Research.

[43]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[44]  Michael F. Green,et al.  Event-related gamma activity in schizophrenia patients during a visual backward-masking task. , 2005, The American journal of psychiatry.

[45]  J. Eggermont Between sound and perception: reviewing the search for a neural code , 2001, Hearing Research.

[46]  R. McCarley,et al.  γ-Band Auditory Steady-State Responses Are Impaired in First Episode Psychosis , 2008, Biological Psychiatry.

[47]  S. Dakin,et al.  Visual Perception and Its Impairment in Schizophrenia , 2008, Biological Psychiatry.

[48]  C. Schroeder,et al.  Subcortical contributions to the surface-recorded flash-VEP in the awake macaque. , 1992, Electroencephalography and clinical neurophysiology.

[49]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[50]  W. Singer,et al.  Synchronization of Visual Responses between the Cortex, Lateral Geniculate Nucleus, and Retina in the Anesthetized Cat , 1998, The Journal of Neuroscience.

[51]  D. Barch,et al.  The Cognitive Neuroscience of Schizophrenia , 2005 .

[52]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[53]  P. König,et al.  Top-down processing mediated by interareal synchronization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[55]  W. Singer,et al.  The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. , 2008, Schizophrenia bulletin.

[56]  E Başar,et al.  Early gamma response is sensory in origin: a conclusion based on cross-comparison of results from multiple experimental paradigms. , 1998, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[57]  D. Regan,et al.  A comparison of the 40-Hz response in man, and the properties of macaque ganglion cells , 1993, Visual Neuroscience.

[58]  W. Iacono,et al.  The status of spectral EEG abnormality as a diagnostic test for schizophrenia , 2008, Schizophrenia Research.

[59]  Leif H. Finkel,et al.  Ketamine Modulates Theta and Gamma Oscillations , 2010, Journal of Cognitive Neuroscience.

[60]  J. Palva,et al.  New vistas for alpha-frequency band oscillations. , 2007, Trends in neurosciences.

[61]  J. Foucher,et al.  Low time resolution in schizophrenia Lengthened windows of simultaneity for visual, auditory and bimodal stimuli , 2007, Schizophrenia Research.

[62]  S. Potkin,et al.  EEG Resonant Responses in Schizophrenia: a Photic Driving Study with Improved Harmonic Resolution , 2000, Schizophrenia Research.

[63]  C. Stromeyer,et al.  Altered ‘three-flash’ illusion in response to two light pulses in schizophrenia , 2008, Schizophrenia Research.

[64]  Idil Cavus,et al.  Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. , 2002, The American journal of psychiatry.

[65]  J. Krystal,et al.  Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. , 1994, Archives of general psychiatry.

[66]  Robert W. McCarley,et al.  γ-Band Auditory Steady-State Responses Are Impaired in First Episode Psychosis , 2008, Biological Psychiatry.

[67]  C. Herrmann Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena , 2001, Experimental Brain Research.

[68]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[69]  B. Baars,et al.  How conscious experience and working memory interact , 2003, Trends in Cognitive Sciences.

[70]  Marcia A. Bockbrader,et al.  Steady state visual evoked potential abnormalities in schizophrenia , 2005, Clinical Neurophysiology.

[71]  R. Hari,et al.  Visually Evoked Gamma Responses in the Human Brain Are Enhanced during Voluntary Hyperventilation , 2002, NeuroImage.

[72]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[73]  Daniel C. Javitt,et al.  Impairments in generation of early-stage transient visual evoked potentials to magno- and parvocellular-selective stimuli in schizophrenia , 2005, Clinical Neurophysiology.

[74]  Robert W. McCarley,et al.  Sensory-Evoked Gamma Oscillations in Chronic Schizophrenia , 2008, Biological Psychiatry.

[75]  P. Uhlhaas,et al.  Perceptual organization in schizophrenia spectrum disorders: empirical research and theoretical implications. , 2005, Psychological bulletin.

[76]  M. Hasselmo,et al.  Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. , 1999, Archives of general psychiatry.

[77]  D. Javitt When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. , 2009, Annual review of clinical psychology.

[78]  B. Schwartz,et al.  Preattentive deficit in temporal processing by chronic schizophrenics , 1988, Biological Psychiatry.

[79]  R. Mcclure The visual backward masking deficit in Schizophrenia , 2001, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[80]  P. Stanzione,et al.  Spatial frequency tuning of the monkey pattern erg depends on d2 receptor-linked action of dopamine , 1994, Vision Research.

[81]  P. O’Donnell,et al.  Gamma and Delta Neural Oscillations and Association with Clinical Symptoms under Subanesthetic Ketamine , 2010, Neuropsychopharmacology.

[82]  R. McCarley,et al.  Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia , 2009, BMC Neuroscience.

[83]  James Gordon,et al.  Entrainment to Video Displays in Primary Visual Cortex of Macaque and Humans , 2004, The Journal of Neuroscience.

[84]  J. Masdeu,et al.  Human Cerebral Activation during Steady-State Visual-Evoked Responses , 2003, The Journal of Neuroscience.

[85]  S. Paradiso,et al.  "Cognitive dysmetria" as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? , 1998, Schizophrenia bulletin.

[86]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[87]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[88]  Daniel C Javitt,et al.  Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. , 2007, International review of neurobiology.

[89]  N. Swerdlow,et al.  Gamma Band Oscillations Reveal Neural Network Cortical Coherence Dysfunction in Schizophrenia Patients , 2006, Biological Psychiatry.

[90]  W G Sannita,et al.  Scalp-recorded oscillatory potentials evoked by transient pattern-reversal visual stimulation in man. , 1995, Electroencephalography and clinical neurophysiology.

[91]  Ken Nakayama,et al.  Effects of typical, atypical, and no antipsychotic drugs on visual contrast detection in schizophrenia. , 2003, The American journal of psychiatry.

[92]  C. C. Wood,et al.  Scalp distributions of event-related potentials: an ambiguity associated with analysis of variance models. , 1985, Electroencephalography and clinical neurophysiology.

[93]  P. Colombo,et al.  NMDA receptors regulate developmental gap junction uncoupling via CREB signaling , 2005, Nature Neuroscience.

[94]  Karl J. Friston,et al.  Schizophrenia: a disconnection syndrome? , 1995, Clinical neuroscience.

[95]  J. Schuck,et al.  Backward masking, information processing, and schizophrenia. , 1989, Schizophrenia bulletin.

[96]  Steven G. Potkin,et al.  Electroencephalographic photic driving in patients with schizophrenia and depression , 1997, Biological Psychiatry.

[97]  Stefan Debener,et al.  Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response , 2004, Clinical Neurophysiology.

[98]  W Singer,et al.  Role of the temporal domain for response selection and perceptual binding. , 1997, Cerebral cortex.

[99]  L. Elliot Hong,et al.  Evoked gamma band synchronization and the liability for schizophrenia , 2004, Schizophrenia Research.

[100]  A. Keil,et al.  Neural mechanisms of evoked oscillations: Stability and interaction with transient events , 2007, Human brain mapping.

[101]  A. Schnitzler,et al.  Normal and pathological oscillatory communication in the brain , 2005, Nature Reviews Neuroscience.

[102]  R. McCarley,et al.  Neural synchrony indexes disordered perception and cognition in schizophrenia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Eugenio Rodriguez,et al.  The development of neural synchrony reflects late maturation and restructuring of functional networks in humans , 2009, Proceedings of the National Academy of Sciences.

[104]  R Isenhart,et al.  Abnormal EEG responses to photic stimulation in schizophrenic patients. , 1990, Schizophrenia bulletin.

[105]  E. Basar,et al.  Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[106]  K. D. Singh,et al.  Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. , 1991, Proceedings of the National Academy of Sciences of the United States of America.