Fabrication of bioactive glass-ceramic foams mimicking human bone portions for regenerative medicine.

[1]  G. Muzio,et al.  Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. , 2007, Acta biomaterialia.

[2]  S. Licoccia,et al.  Foaming of filled polyurethanes for fabrication of porous anode supports for intermediate temperature-solid oxide fuel cells , 2006 .

[3]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[4]  Julian R Jones,et al.  Optimising bioactive glass scaffolds for bone tissue engineering. , 2006, Biomaterials.

[5]  C. Paluszkiewicz,et al.  FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods , 2005 .

[6]  Paolo Colombo,et al.  Cellular Ceramics: Structure, Manufacturing, Properties and Applications , 2005 .

[7]  M. Vallet‐Regí,et al.  The influence of the phosphorus content on the bioactivity of sol-gel glass ceramics. , 2005, Biomaterials.

[8]  Melba Navarro,et al.  New macroporous calcium phosphate glass ceramic for guided bone regeneration. , 2004, Biomaterials.

[9]  Aldo R Boccaccini,et al.  PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. , 2004, Biomaterials.

[10]  A. Rainer,et al.  Catalitic Properties of Ce-TZP Ceramic Foams , 2004 .

[11]  Larry L. Hench,et al.  Regeneration of trabecular bone using porous ceramics , 2003 .

[12]  B. Långström,et al.  Rapid bone and blood flow formation in impacted morselized allograftsPositron emission tomography (PET) studies on allografts in 5 femoral component revisions of total hip arthroplasty , 2003, Acta orthopaedica Scandinavica.

[13]  A. Gjedde Guest editorial: Imaging bones of contention , 2003, Acta orthopaedica Scandinavica.

[14]  J. Evans,et al.  High Porosity Hydroxyapatite Foam Scaffolds for Bone Substitute , 2002 .

[15]  J. Knowles,et al.  Correlation between structure and compressive strength in a reticulated glass-reinforced hydroxyapatite foam , 2002, Journal of materials science. Materials in medicine.

[16]  Richard O C Oreffo,et al.  Bone tissue engineering: hope vs hype. , 2002, Biochemical and biophysical research communications.

[17]  Julian R Jones,et al.  Bioactive sol-gel foams for tissue repair. , 2002, Journal of biomedical materials research.

[18]  Marco Viceconti,et al.  Border-tracing algorithm implementation for the femoral geometry reconstruction , 2001, Comput. Methods Programs Biomed..

[19]  L L Hench,et al.  Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. , 2001, Journal of biomedical materials research.

[20]  T. Yoshikawa Bone reconstruction by cultured bone graft , 2000 .

[21]  M. Vallet‐Regí,et al.  XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. , 1999, Journal of biomedical materials research.

[22]  W. Bonfield,et al.  Synthesis and characterization of carbonate hydroxyapatite , 1998, Journal of materials science. Materials in medicine.

[23]  D. Cochran,et al.  Clinical evaluation of bioactive glass in the treatment of periodontal osseous defects in humans. , 1998, Journal of periodontology.

[24]  L. Hench,et al.  In vitro adsorption and activity of enzymes on reaction layers of bioactive glass substrates. , 1998, Journal of biomedical materials research.

[25]  S. Radin,et al.  The effect of in vitro modeling conditions on the surface reactions of bioactive glass. , 1997, Journal of biomedical materials research.

[26]  J. Davies,et al.  Scanning electron microscopy of the bone-bioactive implant interface. , 1997, Journal of biomedical materials research.

[27]  H. Schliephake,et al.  Reconstruction of the mandible by prefabricated autogenous bone grafts. An experimental study in minipigs. , 1997, International journal of oral and maxillofacial surgery.

[28]  M. Sitarz,et al.  Vibrational spectra of complex ring silicate anions — method of recognition , 1997 .

[29]  R. Jain,et al.  Heating or freezing bone. Effects on angiogenesis induction and growth potential in mice. , 1996, Acta orthopaedica Scandinavica.

[30]  J. Asplin,et al.  Evidence of calcium phosphate supersaturation in the loop of Henle. , 1996, The American journal of physiology.

[31]  M. Glimcher,et al.  Isolation of calcium‐phosphate crystals of bone by non‐aqueous methods at low temperature , 1995, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[32]  E. Hjørting-Hansen,et al.  Healing of experimentally created defects: a review. , 1995, The British journal of oral & maxillofacial surgery.

[33]  S. Powell,et al.  The structure of ceramic foams prepared from polyurethane ceramic suspensions , 1995 .

[34]  R. Jain,et al.  Angiogenesis and growth of isografted bone: quantitative in vivo assay in nude mice. , 1994, Laboratory investigation; a journal of technical methods and pathology.

[35]  L L Hench,et al.  Solution effects on the surface reactions of three bioactive glass compositions. , 1993, Journal of biomedical materials research.

[36]  T. Yamamuro,et al.  Bioactivity of CaO·SiO2 glasses added with various ions , 1992 .

[37]  R Mendelsohn,et al.  Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. , 1991, Biophysical journal.

[38]  R Z LeGeros,et al.  Calcium phosphates in oral biology and medicine. , 1991, Monographs in oral science.

[39]  R M Pilliar,et al.  The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. , 1980, Clinical orthopaedics and related research.

[40]  R. Holmes,et al.  Bone Regeneration Within a Coralline Hydroxyapatite Implant , 1979, Plastic and reconstructive surgery.

[41]  David E. Clark,et al.  Physical chemistry of glass surfaces , 1977 .

[42]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[43]  A. Boskey,et al.  Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: New correlations between X-ray diffraction and infrared data , 2006, Calcified Tissue International.

[44]  Sumin Zhu,et al.  Preparation and characterization of macroporous sol–gel bioglass , 2005 .

[45]  X. Miao,et al.  Sol–gel derived bioglass as a coating materialfor porous alumina scaffolds , 2004 .

[46]  T. Peltola,et al.  Calcium phosphate formation on porous sol-gel-derived SiO2 and CaO-P2O5-SiO2 substrates in vitro. , 1999, Journal of biomedical materials research.

[47]  G. Daculsi,et al.  Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. , 1998, Biomaterials.

[48]  I. Rehman,et al.  Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy , 1997, Journal of materials science. Materials in medicine.

[49]  H. M. Kim,et al.  Characterization of the apatite crystals of bone and their maturation in osteoblast cell culture: comparison with native bone crystals. , 1996, Connective tissue research.

[50]  W C Hayes,et al.  Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. , 1996, Biomaterials.

[51]  G. Busca,et al.  High-quartz solid-solution phases from xerogels with composition 2MgO.2Al2O3.5SiO2 (μ-cordierite) and Li2O.Al2O3.nSiO2 (n = 2 to 4) (β-eucryptite): Characterization by XRD, FTIR and surface measurements , 1993 .

[52]  E. Ethridge,et al.  Aqueous Corrosion of Soda‐Silica and Soda‐Lime‐Silica Glass , 1976 .