Bayesian quantile regression for joint modeling of longitudinal mixed ordinal and continuous data

Abstract In this paper, we develop a joint model based on the random effects approach for bivariate longitudinal mixed ordinal and continuous responses using quantile regression for both responses. In order to model the continuous responses an asymmetric Laplace (AL) distribution is assigned to the error term in continuous model. For modeling the ordinal responses using quantile regression, the threshold concept and a latent variable model in which the error term has AL distribution, is applied. For estimating the parameters a Bayesian approach via Gibbs sampling method is used. Moreover, we use the Peabody Individual Achievement Test (PIAT) dataset to illustrate an application of the proposed model. According to the results, children with low levels of antisocial behavior have better reading ability than that of children with high levels of antisocial behavior.

[1]  R. Koenker Quantile Regression: Name Index , 2005 .

[2]  T. Baghfalaki,et al.  Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach , 2015 .

[3]  M. Ganjali,et al.  A latent variable model for mixed continuous and ordinal responses with nonignorable missing responses: Assessing the local influence via covariance structure , 2010 .

[4]  Ivan Jeliazkov,et al.  FITTING AND COMPARISON OF MODELS FOR MULTIVARIATE ORDINAL OUTCOMES , 2008 .

[5]  M. Zadkarami,et al.  A skew-normal random effects model for longitudinal ordinal categorical responses with missing data , 2015 .

[6]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[7]  G. Molenberghs,et al.  Models for Discrete Longitudinal Data , 2005 .

[8]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[9]  Siddhartha Chib,et al.  MARKOV CHAIN MONTE CARLO METHODS: COMPUTATION AND INFERENCE , 2001 .

[10]  Naomi S. Altman,et al.  Quantile regression , 2019, Nature Methods.

[11]  G. Molenberghs,et al.  Longitudinal data analysis , 2008 .

[12]  M. Bottai,et al.  Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.

[13]  M Ganjali,et al.  A MODEL FOR MIXED CONTINUOUS AND DISCRETE RESPONSES WITH POSSIBILITY OF MISSING RESPONSES , 2003 .

[14]  H. Lian,et al.  Bayesian quantile regression for longitudinal data models , 2012 .

[15]  H. Kozumi,et al.  Gibbs sampling methods for Bayesian quantile regression , 2011 .

[16]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[17]  T. Lancaster,et al.  Bayesian Quantile Regression , 2005 .

[18]  Keming Yu,et al.  A Three-Parameter Asymmetric Laplace Distribution and Its Extension , 2005 .

[19]  M. Ganjali,et al.  Sensitivity analysis for nonignorable missing responses with application to multivariate Random effect model , 2011 .

[20]  M. Ganjali,et al.  A Bayesian test of homogeneity of association parameter using transition modelling of longitudinal mixed responses , 2016 .

[21]  R. Koenker,et al.  Regression Quantiles , 2007 .

[22]  D. Hedeker,et al.  A random-effects ordinal regression model for multilevel analysis. , 1994, Biometrics.

[23]  Mohammad Arshad Rahman,et al.  Bayesian Quantile Regression for Ordinal Models , 2016, 2209.14700.

[24]  G. Yin,et al.  Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data , 2010, Biometrics.

[25]  Rahim Alhamzawi,et al.  Bayesian quantile regression for ordinal longitudinal data , 2016, 1603.00297.

[26]  Ali-akbar Agha-mohammadi,et al.  Bayesian quantile regression for skew-normal linear mixed models , 2017 .