Serotonin and Prefrontal Cortex Function: Neurons, Networks, and Circuits

[1]  M. Puig Serotonergic Modulation of the Prefrontal Cortex: From Neurons to Brain Waves , 2011 .

[2]  J. Monti,et al.  Serotonin control of sleep-wake behavior. , 2011, Sleep medicine reviews.

[3]  E. Miller,et al.  Differences between Neural Activity in Prefrontal Cortex and Striatum during Learning of Novel Abstract Categories , 2011, Neuron.

[4]  Y. Kubota,et al.  Highly Differentiated Projection-Specific Cortical Subnetworks , 2011, The Journal of Neuroscience.

[5]  F. Battaglia,et al.  Oscillations in the prefrontal cortex: a gateway to memory and attention , 2011, Current Opinion in Neurobiology.

[6]  D. Lovinger,et al.  Serotonin Induces Long-Term Depression at Corticostriatal Synapses , 2011, The Journal of Neuroscience.

[7]  C. Schroeder,et al.  Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations , 2011, The Journal of Neuroscience.

[8]  T. Robbins,et al.  Impulsivity, Compulsivity, and Top-Down Cognitive Control , 2011, Neuron.

[9]  Zhen Yan,et al.  Differential Regulation of the Excitability of Prefrontal Cortical Fast-Spiking Interneurons and Pyramidal Neurons by Serotonin and Fluoxetine , 2011, PloS one.

[10]  Y. Kawaguchi,et al.  Cell diversity and connection specificity between callosal projection neurons in the frontal cortex , 2010, Neuroscience Research.

[11]  Daniel Johnston,et al.  Projection-Specific Neuromodulation of Medial Prefrontal Cortex Neurons , 2010, The Journal of Neuroscience.

[12]  M. Roesch,et al.  More Is Less: A Disinhibited Prefrontal Cortex Impairs Cognitive Flexibility , 2010, The Journal of Neuroscience.

[13]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[14]  E. Miller,et al.  Task-Dependent Changes in Short-Term Memory in the Prefrontal Cortex , 2010, The Journal of Neuroscience.

[15]  István Ulbert,et al.  Supplementary material to : Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus , 2010 .

[16]  T. Robbins,et al.  Differential Contributions of the Primate Ventrolateral Prefrontal and Orbitofrontal Cortex to Serial Reversal Learning , 2010, The Journal of Neuroscience.

[17]  E. Geijo-Barrientos,et al.  Inhibition by 5-HT of the synaptic responses evoked by callosal fibers on cortical neurons in the mouse , 2010, Pflügers Archiv - European Journal of Physiology.

[18]  N. Birbaumer,et al.  The Influence of Psychological State and Motivation on Brain–Computer Interface Performance in Patients with Amyotrophic Lateral Sclerosis – a Longitudinal Study , 2010, Front. Neuropharma..

[19]  Rodrigo Andrade,et al.  The Accounting Review , 2001 .

[20]  O. Paulsen,et al.  Identification of the current generator underlying cholinergically induced gamma frequency field potential oscillations in the hippocampal CA3 region , 2010, The Journal of physiology.

[21]  Y. Kawaguchi,et al.  Serotonin Modulates Fast-Spiking Interneuron and Synchronous Activity in the Rat Prefrontal Cortex through 5-HT1A and 5-HT2A Receptors , 2010, The Journal of Neuroscience.

[22]  J. Rossier,et al.  Serotonin 3A Receptor Subtype as an Early and Protracted Marker of Cortical Interneuron Subpopulations , 2010, Cerebral cortex.

[23]  Markus Siegel,et al.  Phase-dependent neuronal coding of objects in short-term memory , 2009, Proceedings of the National Academy of Sciences.

[24]  G. Tononi,et al.  Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. , 2009, Sleep.

[25]  Jian Liu,et al.  In vivo effects of activation and blockade of 5-HT2A/2C receptors in the firing activity of pyramidal neurons of medial prefrontal cortex in a rodent model of Parkinson's disease , 2009, Experimental Neurology.

[26]  R. Andrade,et al.  TRPC Channels Mediate a Muscarinic Receptor-Induced Afterdepolarization in Cerebral Cortex , 2009, The Journal of Neuroscience.

[27]  E. Lambe,et al.  Layer II/III of the Prefrontal Cortex: Inhibition by the Serotonin 5-HT1A Receptor in Development and Stress , 2009, The Journal of Neuroscience.

[28]  D. Bucci,et al.  M1 Receptors Mediate Cholinergic Modulation of Excitability in Neocortical Pyramidal Neurons , 2009, The Journal of Neuroscience.

[29]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[30]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[31]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[32]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[33]  A. Meneses,et al.  Effects of 5‐HT drugs in prefrontal cortex during memory formation and the ketamine amnesia‐model , 2008, Hippocampus.

[34]  P. Celada,et al.  The Hallucinogen DOI Reduces Low-Frequency Oscillations in Rat Prefrontal Cortex: Reversal by Antipsychotic Drugs , 2008, Biological Psychiatry.

[35]  T. Robbins,et al.  Dissociable Effects of Selective 5-HT2A and 5-HT2C Receptor Antagonists on Serial Spatial Reversal Learning in Rats , 2008, Neuropsychopharmacology.

[36]  B. Rudy,et al.  Perisomatic GABA Release and Thalamocortical Integration onto Neocortical Excitatory Cells Are Regulated by Neuromodulators , 2008, Neuron.

[37]  Y. Kawaguchi,et al.  Two distinct activity patterns of fast-spiking interneurons during neocortical UP states , 2008, Proceedings of the National Academy of Sciences.

[38]  H. Kita,et al.  Serotonin activates presynaptic and postsynaptic receptors in rat globus pallidus. , 2008, Journal of neurophysiology.

[39]  Ilya E. Monosov,et al.  Measurements of Simultaneously Recorded Spiking Activity and Local Field Potentials Suggest that Spatial Selection Emerges in the Frontal Eye Field , 2008, Neuron.

[40]  Y. Yanagawa,et al.  Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic venus-expressing rats. , 2008, Cerebral cortex.

[41]  B. Nolan Boosting slow oscillations during sleep potentiates memory , 2008 .

[42]  V. Boulougouris,et al.  Serotonergic and dopaminergic modulation of attentional processes. , 2008, Progress in brain research.

[43]  J. Monti,et al.  The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking. , 2008, Progress in brain research.

[44]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[45]  G. Mengod,et al.  Quantitative analysis of glutamatergic and GABAergic neurons expressing 5‐HT2A receptors in human and monkey prefrontal cortex , 2007, Journal of neurochemistry.

[46]  M. Wingen,et al.  Selective verbal and spatial memory impairment after 5-HT1A and 5-HT2A receptor blockade in healthy volunteers pre-treated with an SSRI , 2007, Journal of psychopharmacology.

[47]  Pradeep J Nathan,et al.  Acute Serotonin and Dopamine Depletion Improves Attentional Control: Findings from the Stroop Task , 2007, Neuropsychopharmacology.

[48]  Kyriaki Sidiropoulou,et al.  Corticolimbic Expression of TRPC4 and TRPC5 Channels in the Rodent Brain , 2007, PloS one.

[49]  R. Andrade,et al.  Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex , 2007, Proceedings of the National Academy of Sciences.

[50]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[51]  C. Bianchi,et al.  Serotonin modulation of cell excitability and of [3H]GABA and [3H]d-aspartate efflux in primary cultures of rat cortical neurons , 2007, Neuropharmacology.

[52]  Yasuo Kawaguchi,et al.  Heterogeneity of phasic cholinergic signaling in neocortical neurons. , 2007, Journal of neurophysiology.

[53]  Maxim Volgushev,et al.  Detection of active and silent states in neocortical neurons from the field potential signal during slow-wave sleep. , 2007, Cerebral cortex.

[54]  M. Wilson,et al.  Coordinated memory replay in the visual cortex and hippocampus during sleep , 2007, Nature Neuroscience.

[55]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[56]  M. Steriade Grouping of brain rhythms in corticothalamic systems , 2006, Neuroscience.

[57]  Kristina J. Nielsen,et al.  Dissociation Between Local Field Potentials and Spiking Activity in Macaque Inferior Temporal Cortex Reveals Diagnosticity-Based Encoding of Complex Objects , 2006, The Journal of Neuroscience.

[58]  Y. Kawaguchi,et al.  Recurrent Connection Patterns of Corticostriatal Pyramidal Cells in Frontal Cortex , 2006, The Journal of Neuroscience.

[59]  Jun Lu,et al.  Sleep circuitry and the hypnotic mechanism of GABAA drugs. , 2006, Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine.

[60]  Claudia Balducci,et al.  Dissociable Contribution of 5-HT1A and 5-HT2A Receptors in the Medial Prefrontal Cortex to Different Aspects of Executive Control such as Impulsivity and Compulsive Perseveration in Rats , 2006, Neuropsychopharmacology.

[61]  T. Robbins,et al.  A comparison of multiple 5-HT receptors in two tasks measuring impulsivity , 2006, Journal of psychopharmacology.

[62]  R. Stickgold Sleep-dependent memory consolidation , 2005, Nature.

[63]  R. Sewell,et al.  Co-administration of fluoxetine and WAY100635 improves short-term memory function. , 2005, European journal of pharmacology.

[64]  David C. Burr,et al.  Using Psilocybin to Investigate the Relationship between Attention, Working Memory, and the Serotonin 1A and 2A Receptors , 2005, Journal of Cognitive Neuroscience.

[65]  R. Andrade,et al.  Serotonergic regulation of calcium‐activated potassium currents in rodent prefrontal cortex , 2005, The European journal of neuroscience.

[66]  Dany Arsenault,et al.  Gain modulation by serotonin in pyramidal neurones of the rat prefrontal cortex , 2005, The Journal of physiology.

[67]  E. Miller,et al.  Different time courses of learning-related activity in the prefrontal cortex and striatum , 2005, Nature.

[68]  J. D. Macklis,et al.  Large‐scale maintenance of dual projections by callosal and frontal cortical projection neurons in adult mice , 2005, The Journal of comparative neurology.

[69]  T. Robbins,et al.  Prefrontal Serotonin Depletion Affects Reversal Learning But Not Attentional Set Shifting , 2005, The Journal of Neuroscience.

[70]  P. Celada,et al.  Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. , 2004, Cerebral cortex.

[71]  B. Hope,et al.  Cocaine-induced Fos expression in rat striatum is blocked by chloral hydrate or urethane , 2004, Neuroscience.

[72]  P. Celada,et al.  In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. , 2004, Cerebral cortex.

[73]  José L Torres-Escalante,et al.  5‐HT1A, 5‐HT2, and GABAB receptors interact to modulate neurotransmitter release probability in layer 2/3 somatosensory rat cortex as evaluated by the paired pulse protocol , 2004, Journal of neuroscience research.

[74]  G. Mengod,et al.  Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. , 2004, Cerebral cortex.

[75]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[76]  F. Artigas,et al.  Control serotoninérgico de la corteza prefrontal , 2004 .

[77]  C. Balducci,et al.  The Serotonin 5-HT2A Receptors Antagonist M100907 Prevents Impairment in Attentional Performance by NMDA Receptor Blockade in the Rat Prefrontal Cortex , 2004, Neuropsychopharmacology.

[78]  T. Robbins,et al.  5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion , 2004, Psychopharmacology.

[79]  R. Andrade,et al.  Serotonergic Regulation of Membrane Potential in Developing Rat Prefrontal Cortex: Coordinated Expression of 5-Hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 Receptors , 2004, The Journal of Neuroscience.

[80]  T. Robbins,et al.  Cognitive Inflexibility After Prefrontal Serotonin Depletion , 2004, Science.

[81]  E. Azmitia,et al.  Serotonin1A receptors at the axon initial segment of prefrontal pyramidal neurons in schizophrenia. , 2004, The American journal of psychiatry.

[82]  P. Celada,et al.  Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. , 2004, Cerebral cortex.

[83]  T. Akasu,et al.  5-Hydroxytryptamine 1B receptors mediate presynaptic inhibition of monosynaptic IPSC in the rat dorsolateral septal nucleus , 2004, Neuroscience Research.

[84]  P. Celada,et al.  [Serotonergic control of prefrontal cortex]. , 2004, Revista de neurologia.

[85]  J. DeFelipe,et al.  A light and electron microscopic study of serotonin-immunoreactive fibers and terminals in the monkey sensory-motor cortex , 2004, Experimental Brain Research.

[86]  Miles A Whittington,et al.  Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro , 2003, Trends in Neurosciences.

[87]  Marc W Howard,et al.  Gamma oscillations correlate with working memory load in humans. , 2003, Cerebral cortex.

[88]  L. M. Ward,et al.  Synchronous neural oscillations and cognitive processes , 2003, Trends in Cognitive Sciences.

[89]  T. Robbins,et al.  Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity , 2003, Behavioural Brain Research.

[90]  A. Chocyk,et al.  Serotonin 5-HT1A receptors might control the output of cortical glutamatergic neurons in rat cingulate cortex , 2003, Brain Research.

[91]  P. Celada,et al.  In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. , 2003, Cerebral cortex.

[92]  M. Hajós,et al.  In vivo inhibition of neuronal activity in the rat ventromedial prefrontal cortex by midbrain-raphe nuclei: role of 5-HT1A receptors , 2003, Neuropharmacology.

[93]  N. Tokutomi,et al.  A distinct distribution of functional presynaptic 5-HT receptor subtypes on GABAergic nerve terminals projecting to single hippocampal CA1 pyramidal neurons , 2003, Neuropharmacology.

[94]  Yogita Chudasama,et al.  Intra-prefrontal 8-OH-DPAT and M100907 improve visuospatial attention and decrease impulsivity on the five-choice serial reaction time task in rats , 2003, Psychopharmacology.

[95]  D. Prince,et al.  Heterogeneous actions of serotonin on interneurons in rat visual cortex. , 2003, Journal of neurophysiology.

[96]  S. Sesack,et al.  Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex , 2003, Neuroscience.

[97]  R. Corradetti,et al.  Pharmacological characterization of 5‐HT1B receptor‐mediated inhibition of local excitatory synaptic transmission in the CA1 region of rat hippocampus , 2003, British journal of pharmacology.

[98]  N. Akaike,et al.  Role of presynaptic 5-HT1A and 5-HT3 receptors in modulation of synaptic GABA transmission in dissociated rat basolateral amygdala neurons. , 2002, Life sciences.

[99]  G. Kinney,et al.  Serotonergic Modulation of Supragranular Neurons in Rat Sensorimotor Cortex , 2002, The Journal of Neuroscience.

[100]  Edith Hamel,et al.  5-HT3 Receptors Mediate Serotonergic Fast Synaptic Excitation of Neocortical Vasoactive Intestinal Peptide/Cholecystokinin Interneurons , 2002, The Journal of Neuroscience.

[101]  J. Lisman,et al.  Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. , 2002, Cerebral cortex.

[102]  Dawn M Eagle,et al.  Deficits in Impulse Control Associated with Tonically-elevated Serotonergic Function in Rat Prefrontal Cortex , 2002, Neuropsychopharmacology.

[103]  P. Goldman-Rakic,et al.  The Physiological Role of 5-HT2A Receptors in Working Memory , 2002, The Journal of Neuroscience.

[104]  P. Gaspar,et al.  Activity-Dependent Presynaptic Effect of Serotonin 1B Receptors on the Somatosensory Thalamocortical Transmission in Neonatal Mice , 2002, The Journal of Neuroscience.

[105]  岸本 恭紀 Synergistic μ-opioid and 5-HT1A presynaptic inhibition of GABA release in rat periaqueductal gray neurons , 2002 .

[106]  B. Roth,et al.  Control of Serotonergic Function in Medial Prefrontal Cortex by Serotonin-2A Receptors through a Glutamate-Dependent Mechanism , 2001, The Journal of Neuroscience.

[107]  P. Celada,et al.  Control of Dorsal Raphe Serotonergic Neurons by the Medial Prefrontal Cortex: Involvement of Serotonin-1A, GABAA, and Glutamate Receptors , 2001, The Journal of Neuroscience.

[108]  Q. Yan,et al.  Serotonin‐1B receptor‐mediated inhibition of [3H]GABA release from rat ventral tegmental area slices , 2001, Journal of neurochemistry.

[109]  N. Akaike,et al.  Synergistic μ-opioid and 5-HT1A presynaptic inhibition of GABA release in rat periaqueductal gray neurons , 2001, Neuropharmacology.

[110]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[111]  K Fuxe,et al.  Relationships of 5-hydroxytryptamine immunoreactive terminal-like varicosities to 5-hydroxytryptamine-2A receptor-immunoreactive neuronal processes in the rat forebrain , 2001, Journal of Chemical Neuroanatomy.

[112]  S. Konishi,et al.  Multiple G-protein-coupled receptors mediate presynaptic inhibition at single excitatory synapses in the rat visual cortex , 2001, Neuroscience Letters.

[113]  Takeshi Kaneko,et al.  Morphological features and electrophysiological properties of serotonergic and non-serotonergic projection neurons in the dorsal raphe nucleus An intracellular recording and labeling study in rat brain slices , 2001, Brain Research.

[114]  J. Fuster The Prefrontal Cortex—An Update Time Is of the Essence , 2001, Neuron.

[115]  Javier DeFelipe,et al.  Pyramidal cell axons show a local specialization for GABA and 5‐HT inputs in monkey and human cerebral cortex , 2001, The Journal of comparative neurology.

[116]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[117]  Dennis L. Murphy,et al.  Excessive Activation of Serotonin (5-HT) 1B Receptors Disrupts the Formation of Sensory Maps in Monoamine Oxidase A and 5-HT Transporter Knock-Out Mice , 2001, The Journal of Neuroscience.

[118]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[119]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[120]  M. Wilson,et al.  Temporally Structured Replay of Awake Hippocampal Ensemble Activity during Rapid Eye Movement Sleep , 2001, Neuron.

[121]  P. Goldman-Rakic,et al.  Serotonin induces EPSCs preferentially in layer V pyramidal neurons of the frontal cortex in the rat. , 2000, Cerebral cortex.

[122]  M. Hajós,et al.  Neurochemical and electrophysiological studies on the functional significance of burst firing in serotonergic neurons , 2000, Neuroscience.

[123]  P. Goldman-Rakic,et al.  Segregation of serotonin 5‐HT2A and 5‐HT3 receptors in inhibitory circuits of the primate cerebral cortex , 2000, The Journal of comparative neurology.

[124]  Reidun Ursin,et al.  Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies , 2000, Progress in Neurobiology.

[125]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[126]  H. Groenewegen,et al.  The prefrontal cortex and the integration of sensory, limbic and autonomic information. , 2000, Progress in brain research.

[127]  F. Zhou,et al.  Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. , 1999, Journal of neurophysiology.

[128]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[129]  G. Aghajanian,et al.  5-HT2A receptor or alpha1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. , 1999, European journal of pharmacology.

[130]  M. Hamon,et al.  Cellular and subcellular localization of 5-hydroxytryptamine1B receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies , 1999, Neuroscience.

[131]  S. Haj-Dahmane,et al.  Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex. , 1998, Journal of neurophysiology.

[132]  M. Hajós,et al.  An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat , 1998, Neuroscience.

[133]  M. Buhot,et al.  Differential effects of serotonin (5-HT) lesions and synthesis blockade on neuropeptide-Y immunoreactivity and 5-HT1A, 5-HT1B/1D and 5-HT2A/2C receptor binding sites in the rat cerebral cortex , 1998, Brain Research.

[134]  Y. Kubota,et al.  Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex , 1998, Neuroscience.

[135]  Matthias Schmidt,et al.  Correlation of electrophysiology, morphology, and functions in corticotectal and corticopretectal projection neurons in rat visual cortex , 1998, Experimental Brain Research.

[136]  P S Goldman-Rakic,et al.  5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[137]  C. Rampon,et al.  Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods , 1997, Neuroscience.

[138]  Barry J. Everitt,et al.  Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms , 1997, Psychopharmacology.

[139]  J. Palacios,et al.  Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907 , 1997, Naunyn-Schmiedeberg's Archives of Pharmacology.

[140]  A. Deutch,et al.  Serotonin 5‐HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex , 1997, Synapse.

[141]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[142]  C. H. Vanderwolf,et al.  Neocortical activation: modulation by multiple pathways acting on central cholinergic and serotonergic systems , 1997, Experimental Brain Research.

[143]  F. Bloom,et al.  The 5-HT3 Receptor Is Present in Different Subpopulations of GABAergic Neurons in the Rat Telencephalon , 1997, The Journal of Neuroscience.

[144]  G. Aghajanian,et al.  Serotonin Induces Excitatory Postsynaptic Potentials in Apical Dendrites of Neocortical Pyramidal Cells , 1997, Neuropharmacology.

[145]  M. Postlethwaite,et al.  Metabotropic glutamate receptor subtypes mediating slow inward tail current (IADP) induction and inhibition of synaptic transmission in olfactory cortical neurones , 1997, British journal of pharmacology.

[146]  M. Hamon,et al.  Ultrastructural localization of 5‐hydroxytryptamine1A receptors in the rat brain , 1996, Journal of neuroscience research.

[147]  F. Bloom,et al.  The type 3 serotonin receptor is expressed in a subpopulation of GABAergic neurons in the rat neocortex and hippocampus , 1996, Brain Research.

[148]  S. Haj-Dahmane,et al.  Muscarinic Activation of a Voltage-Dependent Cation Nonselective Current in Rat Association Cortex , 1996, The Journal of Neuroscience.

[149]  P. Goldman-Rakic,et al.  Serotonergic axons in monkey prefrontal cerebral cortex synapse predominantly on interneurons as demonstrated by serial section electron microscopy , 1996, The Journal of comparative neurology.

[150]  M. Morales,et al.  Cellular and subcellular immunolocalization of the type 3 serotonin receptor in the rat central nervous system. , 1996, Brain research. Molecular brain research.

[151]  E. Azmitia,et al.  Cellular Localization of the 5-HT1A Receptor in Primate Brain Neurons and Glial Cells , 1996, Neuropsychopharmacology.

[152]  T. Sharp,et al.  Release of cerebral 5-hydroxytryptamine evoked by electrical stimulation of the dorsal and median raphe nuclei: effect of a neurotoxic amphetamine , 1995, Neuroscience.

[153]  D. Contreras,et al.  Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[154]  W. Spain Serotonin has different effects on two classes of Betz cells from the cat. , 1994, Journal of neurophysiology.

[155]  P. Schwindt,et al.  Properties and ionic mechanisms of a metabotropic glutamate receptor-mediated slow afterdepolarization in neocortical neurons. , 1994, Journal of neurophysiology.

[156]  P P Humphrey,et al.  International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). , 1994, Pharmacological reviews.

[157]  M. Pompeiano,et al.  Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. , 1994, Brain research. Molecular brain research.

[158]  R. Hen,et al.  The mouse 5-hydroxytryptamine 1B receptor is localized predominantly on axon terminals , 1994, Neuroscience.

[159]  C. Blakemore,et al.  Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets , 1994, The Journal of comparative neurology.

[160]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[161]  R. North,et al.  Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. , 1993, Journal of neurophysiology.

[162]  R. Rhoades,et al.  Serotonin 1B receptors in the developing somatosensory and visual cortices are located on thalamocortical axons. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[163]  J. Lacaille,et al.  Reduction of GABAB inhibitory postsynaptic potentials by serotonin via pre‐ and postsynaptic mechanisms in CA3 pyramidal cells of rat hippocampus in vitro , 1992, Synapse.

[164]  R. Rhoades,et al.  Serotonin 1B receptors form a transient vibrissa-related pattern in the primary somatosensory cortex of the developing rat. , 1992, Brain research. Developmental brain research.

[165]  J. Hornung,et al.  The Selective innervation by serotoninergic axons of calbindin‐containing interneurons in the neocortex and hippocampus of the marmoset , 1992, The Journal of comparative neurology.

[166]  N. Mercuri,et al.  5-hydroxytryptamine1B receptors block the GABAB synaptic potential in rat dopamine neurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[167]  U. Boschert,et al.  Mouse 5HT1B serotonin receptor: cloning, functional expression, and localization in motor control centers. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[168]  M. Pompeiano,et al.  Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[169]  R. Andrade,et al.  5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex , 1991, Neuroscience.

[170]  J. DeFelipe,et al.  Synaptic relationships of serotonin-immunoreactive terminal baskets on GABA neurons in the cat auditory cortex. , 1991, Cerebral cortex.

[171]  B. Vogt,et al.  Cellular localization of serotonin 1A, 1B and uptake sites in cingulate cortex of the rat. , 1990, The Journal of pharmacology and experimental therapeutics.

[172]  R. Roth,et al.  Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract‐tracing study with Phaseolus vulgaris leucoagglutinin , 1989, The Journal of comparative neurology.

[173]  L. Descarries,et al.  Ultrastructural relationships of serotonin axon terminals in the cerebral cortex of the adult rat , 1989, The Journal of comparative neurology.

[174]  D. McCormick,et al.  Convergence and divergence of neurotransmitter action in human cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[175]  I. Törk,et al.  Serotoninergic innervation of the cat cerebral cortex , 1988, The Journal of comparative neurology.

[176]  D. Prince,et al.  Two distinct effects of 5-hydroxytryptamine on single cortical neurons , 1987, Brain Research.

[177]  C.J. Wilson,et al.  Morphology and synaptic connections of crossed corticostriatal neurons in the rat , 1987, The Journal of comparative neurology.

[178]  R. Nicoll,et al.  A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. , 1986, Science.

[179]  J. Palacios,et al.  Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors , 1985, Brain Research.

[180]  O. Andy The prefrontal cortex: Anatomy, physiology and neuropsychology of the frontal lobe , 1981 .