Spatially-Variant Directional Mathematical Morphology Operators Based on a Diffused Average Squared Gradient Field

This paper proposes an approach for mathematical morphology operators whose structuring element can locally adapt its orientation across the pixels of the image. The orientation at each pixel is extracted by means of a diffusion process of the average squared gradient field. The resulting vector field, the average squared gradient vector flow, extends the orientation information from the edges of the objects to the homogeneous areas of the image. The provided orientation field is then used to perform a spatially variant filtering with a linear structuring element. Results of erosion, dilation, opening and closing spatially-variant on binary images prove the validity of this theoretical sound and novel approach.

[1]  Jos B. T. M. Roerdink,et al.  Group morphology , 2000, Pattern Recognit..

[2]  Hugues Talbot,et al.  Directional Morphological Filtering , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[4]  Jerry L. Prince,et al.  Generalized gradient vector flow external forces for active contours , 1998, Signal Process..

[5]  Olivier Cuisenaire Locally adaptable mathematical morphology using distance transformations , 2006, Pattern Recognit..

[6]  Sabih H. Gerez,et al.  Systematic Methods for the Computation of the Directional Fields and Singular Points of Fingerprints , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Pietro Perona Orientation diffusions , 1998, IEEE Trans. Image Process..

[8]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[9]  Kristel Michielsen,et al.  Morphological image analysis , 2000 .

[10]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[11]  Dan Schonfeld,et al.  Theoretical Foundations of Spatially-Variant Mathematical Morphology Part II: Gray-Level Images , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[13]  Etienne Decencière,et al.  Image filtering using morphological amoebas , 2007, Image Vis. Comput..

[14]  Hugues Talbot,et al.  Path Openings and Closings , 2005, Journal of Mathematical Imaging and Vision.