Optimal variable-order fractional PID controllers for dynamical systems

Abstract This paper studies the design of variable-order fractional proportional–integral–derivative (VFPID) controllers for linear dynamical systems. For this purpose, a technique to discretize fractional differential equations with variable-order operators is proposed. The resulting model and a particle swarm optimization algorithm are used to search for the optimal parameters of the VFPID controllers. Three examples illustrate the performance of the closed-loop system under the action of the VFPID and compare it with the results obtained by means of the PID and fractional PID (FPID). Furthermore, time-dependent parameters are also tested, showing that the VFPID yields a superior performance.

[1]  J. A. Tenreiro Machado,et al.  An Extended Predictor–Corrector Algorithm for Variable-Order Fractional Delay Differential Equations , 2016 .

[2]  Tore Hägglund,et al.  Advanced PID Control , 2005 .

[3]  Delfim F. M. Torres,et al.  Constrained fractional variational problems of variable order , 2016, IEEE/CAA Journal of Automatica Sinica.

[4]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[5]  Hari M. Srivastava,et al.  Local fractional similarity solution for the diffusion equation defined on Cantor sets , 2015, Appl. Math. Lett..

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[8]  Delfim F. M. Torres,et al.  Caputo derivatives of fractional variable order: Numerical approximations , 2015, Commun. Nonlinear Sci. Numer. Simul..

[9]  Y. Chen,et al.  A fractional order PID tuning algorithm for a class of fractional order plants , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[10]  José António Tenreiro Machado,et al.  A New Family of the Local Fractional PDEs , 2017, Fundam. Informaticae.

[11]  I. Podlubny Fractional-Order Systems and -Controllers , 1999 .

[12]  Ravi P. Agarwal,et al.  Nonlocal nonlinear integrodifferential equations of fractional orders , 2012 .

[13]  J. Machado,et al.  A new fractional operator of variable order: Application in the description of anomalous diffusion , 2016, 1611.09200.

[14]  Duarte Valério,et al.  Tuning of fractional PID controllers with Ziegler-Nichols-type rules , 2006, Signal Process..

[15]  W. Chen,et al.  A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems , 2011 .

[16]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[17]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[18]  Bertram Ross,et al.  Fractional integration operator of variable order in the holder spaces Hλ(x) , 1995 .

[19]  Dumitru Baleanu,et al.  A New Formulation of the Fractional Optimal Control Problems Involving Mittag–Leffler Nonsingular Kernel , 2017, J. Optim. Theory Appl..

[20]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[21]  Carlos Lizama,et al.  Weighted bounded solutions for a class of nonlinear fractional equations , 2016 .

[22]  José António Tenreiro Machado,et al.  Optimal Controllers with Complex Order Derivatives , 2013, J. Optim. Theory Appl..

[23]  J. Machado Optimal tuning of fractional controllers using genetic algorithms , 2010 .

[24]  Sudhir Agashe,et al.  Review of fractional PID controller , 2016 .

[25]  B. Ross,et al.  Integration and differentiation to a variable fractional order , 1993 .

[26]  Y. Chen,et al.  Variable-order fractional differential operators in anomalous diffusion modeling , 2009 .

[27]  José António Tenreiro Machado,et al.  Extended Algorithms for Approximating Variable Order Fractional Derivatives with Applications , 2017, J. Sci. Comput..

[28]  Weng Khuen Ho,et al.  Tuning of PID controllers based on gain and phase margin specifications , 1995, Autom..

[29]  D. P. Atherton,et al.  Automatic tuning of optimum PID controllers , 1993 .

[30]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[31]  José António Tenreiro Machado,et al.  SM-Algorithms for Approximating the Variable-Order Fractional Derivative of High Order , 2017, Fundam. Informaticae.

[32]  C. Hang,et al.  Refinements of the Ziegler-Nichols tuning formula , 1991 .

[33]  Hari M. Srivastava,et al.  A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach , 2016, Appl. Math. Comput..

[34]  Guanrong Chen,et al.  On feedback control of chaotic continuous-time systems , 1993 .

[35]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[36]  Abiola D. Obembe,et al.  Variable-order derivative time fractional diffusion model for heterogeneous porous media , 2017 .

[37]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[38]  Dumitru Baleanu,et al.  Optimal control of nonlinear dynamical systems based on a new parallel eigenvalue decomposition approach , 2018 .

[39]  Wei Jiang,et al.  A numerical method for solving the time variable fractional order mobile–immobile advection–dispersion model , 2017 .

[40]  Carlos F.M. Coimbra,et al.  Mechanics with variable‐order differential operators , 2003 .

[41]  Yong Zhou,et al.  Weak solutions of the time-fractional Navier-Stokes equations and optimal control , 2017, Comput. Math. Appl..

[42]  Vicente Feliu,et al.  On Fractional PID Controllers: A Frequency Domain Approach , 2000 .

[43]  Tamer Mansour,et al.  PID Control, Implementation and Tuning , 2011 .

[44]  J. Machado Calculation of fractional derivatives of noisy data with genetic algorithms , 2009 .

[45]  Zwe-Lee Gaing A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004, IEEE Transactions on Energy Conversion.

[46]  J. A. Tenreiro Machado,et al.  Tuning of PID Controllers Based on Bode’s Ideal Transfer Function , 2004 .

[47]  Behrouz Parsa Moghaddam,et al.  An integro quadratic spline approach for a class of variable-order fractional initial value problems , 2017 .

[48]  P. B. de Moura Oliveira,et al.  Fractional Particle Swarm Optimization , 2014 .

[49]  Amar Debbouche,et al.  On local fractional Volterra integral equations in fractal heat transfer , 2016 .

[50]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[51]  Behrouz Parsa Moghaddam,et al.  A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels , 2017 .

[52]  Ravi P. Agarwal,et al.  Fractional Differential Equations with Nonlocal (Parametric Type) Anti-Periodic Boundary Conditions , 2017 .

[53]  P. B. de Moura Oliveira,et al.  Particle Swarm Optimization: Dynamical Analysis through Fractional Calculus , 2009 .

[54]  Dominik Sierociuk,et al.  Comparison of variable fractional order PID controller for different types of variable order derivatives , 2013, Proceedings of the 14th International Carpathian Control Conference (ICCC).

[55]  J. A. Tenreiro Machado,et al.  Optimal approximation of fractional derivatives through discrete-time fractions using genetic algorithms , 2010 .

[56]  Carlos Lizama,et al.  Solutions of two-term time fractional order differential equations with nonlocal initial conditions , 2012 .

[57]  JinRong Wang,et al.  Nonlocal problems for fractional integrodifferential equations via fractional operators and optimal controls , 2011, Comput. Math. Appl..

[58]  O. Weck,et al.  A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND THE GENETIC ALGORITHM , 2005 .

[59]  J. A. Tenreiro Machado,et al.  Fractional Order PDαJoint Control of Legged Robots , 2006 .

[60]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[61]  Carlos F.M. Coimbra,et al.  On the Selection and Meaning of Variable Order Operators for Dynamic Modeling , 2010 .

[62]  S. Pooseh Computational Methods in the Fractional Calculus of Variations , 2013, 1312.4064.

[63]  J. Nieto,et al.  RELAXATION IN CONTROLLED SYSTEMS DESCRIBED BY FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NONLOCAL CONTROL CONDITIONS , 2015 .