Zn0.97-xCu0.03VxO (x = 0, 0.02, 0.04) hexagonal tube and microrods structures: Optical, refractive index, electrical and solar photocatalytic properties

[1]  V. Jiménez‐Pérez,et al.  Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants , 2022, Materials Science in Semiconductor Processing.

[2]  Sejeong Kim,et al.  Nanowires for 2D material-based photonic and optoelectronic devices , 2022, Nanophotonics.

[3]  W. Sharmoukh,et al.  Fast and full spectrum sunlight photocatalysts: Fe/Co or Ni implanted multiferroic LaMnO3 , 2022, Optical Materials.

[4]  M. Yilmaz,et al.  The electrical and dielectric characterization of the Co/ZnO-Rods/p-Si heterostructure depending on the frequency , 2022, Journal of Materials Science: Materials in Electronics.

[5]  A. M. Youssef,et al.  Colossal dielectric constant, electric modulus and electrical conductivity of nanocrystalline SnO2: Role of Zr/Mn, Fe or Co dopants , 2022, Journal of Solid State Chemistry.

[6]  H. S. Lalithamba,et al.  Structural, optical and electrical properties of undoped and doped (Al, Al + Mn) ZnO nanoparticles synthesised by green combustion method using terminalia catappa seed extract , 2022, Materials Today: Proceedings.

[7]  V. Dang,et al.  Visible photodetector based on transition metal-doped ZnO NRs/PEDOT:PSS hybrid materials , 2021, RSC advances.

[8]  A. M. Youssef,et al.  Colossal permittivity, electrical conductivity and ferromagnetic properties of pure TiO2: Mono and binary doping , 2021, Materialia.

[9]  Y. Lim,et al.  Electrical and dielectric parameters in TiO2-NW/Ge-NW heterostructure MOS device synthesized by glancing angle deposition technique , 2021, Scientific Reports.

[10]  S. Kaushal,et al.  Sunlight driven photocatalytic degradation of organic pollutants using a MnV2O6/BiVO4 heterojunction: mechanistic perception and degradation pathways , 2021, Nanoscale advances.

[11]  K. Khirouni,et al.  Optical studies of multiferroic HoCrO3 perovskite compound for optoelectronic device applications , 2021 .

[12]  N. Shetti,et al.  Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. , 2021, Chemosphere.

[13]  Helen P. Kavitha,et al.  Sunlight-assisted degradation of textile pollutants and phytotoxicity evaluation using mesoporous ZnO/g-C3N4 catalyst , 2021, RSC advances.

[14]  M. K. Mustafa,et al.  Interface study of hybrid CuO nanoparticles embedded ZnO nanowires heterojunction synthesized by controlled vapor deposition approach for optoelectronic devices , 2021, Optical Materials.

[15]  M. Wahba,et al.  Interface engineered efficient visible light photocatalytic activity of MWCNTs/Co doped ZnO nanocomposites: Morphological, optical, electrical and magnetic properties , 2021 .

[16]  A. Al-Muhtaseb,et al.  Recent advances of layered-transition metal oxides for energy-related applications , 2021 .

[17]  A. Kabir,et al.  Synthesis, characterization and visible light-responsive photocatalysis properties of Ce doped CuO nanoparticles: A combined experimental and DFT+U study , 2021, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[18]  P. A. Alvi,et al.  A comprehensive study on the impact of Gd substitution on structural, optical and magnetic properties of ZnO nanocrystals , 2021, Journal of Alloys and Compounds.

[19]  S. Ilyas,et al.  Optoelectronic and solar cell applications of ZnO nanostructures , 2021 .

[20]  P. Biagioni,et al.  Optical and electronic properties of transparent conducting Ta:TiO2 thin and ultra-thin films: the effect of doping and thickness , 2021, Materials Advances.

[21]  A. Gupta,et al.  Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review , 2021, Materials Advances.

[22]  H. Ardy,et al.  ZnO nanostructured materials for emerging solar cell applications , 2020, RSC advances.

[23]  P. A. Alvi,et al.  Oxygen vacancies mediated cooperative magnetism in ZnO nanocrystals: A d0 ferromagnetic case study , 2020 .

[24]  Elisabetta Comini,et al.  Metal oxides nanowires chemical/gas sensors: recent advances , 2020 .

[25]  A. Youssef,et al.  Superior sunlight photocatalytic of N/La codoped ZnO nanostructures synthesized using different chelating agents , 2020 .

[26]  K. Khirouni,et al.  Electrical conductivity improvement of Fe doped ZnO nanopowders , 2020, Materials Research Bulletin.

[27]  P. Ruankham,et al.  Dye wastewater treatment enabled by piezo-enhanced photocatalysis of single-component ZnO nanoparticles , 2020, RSC advances.

[28]  S. N. Dolia,et al.  Defects and oxygen vacancies tailored structural, optical, photoluminescence and magnetic properties of Li doped ZnO nanohexagons , 2020 .

[29]  Ş. Şenol,et al.  Synthesis, structure and optical properties of (Mn/Cu) co-doped ZnO nanoparticles , 2020, Journal of Alloys and Compounds.

[30]  A. Youssef,et al.  Enhanced visible light photocatalytic activity of C/La or Ce codoped ZnO nanostructures: Morphological, optical, magnetic and electrical properties studies , 2020, Journal of Environmental Chemical Engineering.

[31]  Zhiping Du,et al.  Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol wastewater , 2020 .

[32]  Ş. Şenol,et al.  Structure, microstructure, optical and photocatalytic properties of Mn-doped ZnO nanoparticles , 2020, Materials Research Express.

[33]  M. Wahba,et al.  Innovative visible light photocatalytic activity for V-doped ZrO2 structure: optical, morphological, and magnetic properties , 2019, Journal of Sol-Gel Science and Technology.

[34]  S. Yakout Inclusion of cobalt reinforced Ag doped SnO2 properties: electrical, dielectric constant, magnetic and photocatalytic insights , 2019, Journal of Materials Science: Materials in Electronics.

[35]  J. A. Pamphile,et al.  Effects of textile dyes on health and the environment and bioremediation potential of living organisms , 2019, Biotechnology Research and Innovation.

[36]  P. A. Alvi,et al.  A comparative study on the influence of monovalent, divalent and trivalent doping on the structural, optical and photoluminescence properties of Zn0.96T0.04O (T: Li+, Ca2+& Gd3+) nanoparticles , 2019, Ceramics International.

[37]  R. Chtourou,et al.  The structure and photoluminescence of a ZnO phosphor synthesized by the sol gel method under praseodymium doping , 2019, RSC advances.

[38]  Jinlong Jiang,et al.  Synthesis of ZnO doped high valence S element and study of photogenerated charges properties , 2019, RSC advances.

[39]  A. Haider,et al.  Review on: Titanium Dioxide Applications , 2019, Energy Procedia.

[40]  S. Yakout Pure and Gd-based Li, Na, Mn or Fe codoped ZnO nanoparticles: Insights into the magnetic and photocatalytic properties , 2018, Solid State Sciences.

[41]  G. Fang,et al.  Review on the Application of SnO2 in Perovskite Solar Cells , 2018, Advanced Functional Materials.

[42]  Abdul Wahab Mohammad,et al.  A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications , 2018 .

[43]  Myung‐Han Yoon,et al.  Sol-gel metal oxide dielectrics for all-solution-processed electronics , 2017 .

[44]  Zhiyu Wang,et al.  Ultrasonic-induced disorder engineering on ZnO, ZrO2, Fe2O3 and SnO2 nanocrystals , 2017 .

[45]  A. Popa,et al.  V-doped ZnO particles: synthesis, structural, optical and photocatalytic properties , 2016, Journal of Materials Science: Materials in Electronics.

[46]  S. Tripathy,et al.  Refractive indices of semiconductors from energy gaps , 2015, 1508.03511.

[47]  R. N. Malik,et al.  Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview , 2014 .

[48]  Sung-Hwan Han,et al.  A coordination chemistry approach for shape controlled synthesis of indium oxide nanostructures and their photoelectrochemical properties , 2014 .

[49]  G. Tobias,et al.  Role ofp-dands-dinteractions in the electronic structure and band gap of Zn1−xMxO (M=Cr, Mn, Fe, Co, Ni, and Cu): Photoelectron and optical spectroscopy and first-principles band structure calculations , 2012 .

[50]  Monika Tomar,et al.  SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures , 2011 .

[51]  A. Ng,et al.  ZnO nanostructures for optoelectronics: Material properties and device applications , 2010 .

[52]  Daniel Hofstetter,et al.  ZnO Devices and Applications: A Review of Current Status and Future Prospects , 2010, Proceedings of the IEEE.

[53]  R. Ahuja,et al.  Magnetism and band gap narrowing in Cu-doped ZnO , 2009 .

[54]  Ji Haeng Yu,et al.  Selective CO gas detection of CuO- and ZnO-doped SnO2 gas sensor , 2001 .