Introduction to Classification in Microarray Experiments

[1]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .

[2]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[3]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[4]  L. Breiman Arcing classifier (with discussion and a rejoinder by the author) , 1998 .

[5]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[6]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy number variation in breast cancer using DNA microarrays , 1999, Nature Genetics.

[7]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy-number changes using cDNA microarrays , 1999, Nature Genetics.

[9]  Christian A. Rees,et al.  Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  N. Sampas,et al.  Molecular classification of cutaneous malignant melanoma by gene expression profiling , 2000, Nature.

[11]  M. Caligiuri,et al.  Aberrant CpG-island methylation has non-random and tumour-type–specific patterns , 2000, Nature Genetics.

[12]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[13]  Christian A. Rees,et al.  Systematic variation in gene expression patterns in human cancer cell lines , 2000, Nature Genetics.

[14]  Joe W. Gray,et al.  Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Tibshirani,et al.  Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  I. Mian,et al.  Identifying marker genes in transcription profiling data using a mixture of feature relevance experts. , 2001, Physiological genomics.

[17]  R. Spang,et al.  Predicting the clinical status of human breast cancer by using gene expression profiles , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  T. H. Bø,et al.  New feature subset selection procedures for classification of expression profiles , 2002, Genome Biology.

[19]  T. Poggio,et al.  Prediction of central nervous system embryonal tumour outcome based on gene expression , 2002, Nature.

[20]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[21]  D. Botstein,et al.  Gene expression patterns in human liver cancers. , 2002, Molecular biology of the cell.

[22]  Ash A. Alizadeh,et al.  Stereotyped and specific gene expression programs in human innate immune responses to bacteria , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Tibshirani,et al.  Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. Bühlmann,et al.  How to use boosting for tumor classification with gene expression data , 2002 .

[25]  Sandrine Dudoit,et al.  Classification in microarray experiments , 2003 .

[26]  Jerome H. Friedman,et al.  On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality , 2004, Data Mining and Knowledge Discovery.