Hierarchical control architecture for demand response in smart grids

To compensate for intermittency of generation and consequent impacts of non-dispatchable generating sources, especially solar PV panels and wind turbines, demand response (DR) has been considered one of the most effective tools. In recent years, DR has received more attention as a potentially effective tool for optimum asset utilization and to avoid or delay the need for new infrastructure investment. Furthermore, most of the power networks are under the process of reconfiguration to realize the concept of smart grid and are at the transforming stage to support various forms of DR. However, a number of issues, including DR enabling technologies, control strategy, and control architecture, are still under discussion. This paper outlines novel control requirements based on the categorization of existing DR techniques. More specifically, the roles and responsibilities of smart grid actors for every DR category are allotted and their mode of interactions to coordinate individual as well as coordinative goals is described. Next, hierarchical control architecture (HCA) is developed for the overall coordination of control strategies for individual DR categories. The involved issues are discussed and compared.