Determining Relative Importance and Effective Settings for Genetic Algorithm Control Parameters

Setting the control parameters of a genetic algorithm to obtain good results is a long-standing problem. We define an experiment design and analysis method to determine relative importance and effective settings for control parameters of any evolutionary algorithm, and we apply this method to a classic binary-encoded genetic algorithm (GA). Subsequently, as reported elsewhere, we applied the GA, with the control parameter settings determined here, to steer a population of cloud-computing simulators toward behaviors that reveal degraded performance and system collapse. GA-steered simulators could serve as a design tool, empowering system engineers to identify and mitigate low-probability, costly failure scenarios. In the existing GA literature, we uncovered conflicting opinions and evidence regarding key GA control parameters and effective settings to adopt. Consequently, we designed and executed an experiment to determine relative importance and effective settings for seven GA control parameters, when applied across a set of numerical optimization problems drawn from the literature. This paper describes our experiment design, analysis, and results. We found that crossover most significantly influenced GA success, followed by mutation rate and population size and then by rerandomization point and elite selection. Selection method and the precision used within the chromosome to represent numerical values had least influence. Our findings are robust over 60 numerical optimization problems.

[1]  Juan Julián Merelo Guervós,et al.  Statistical Analysis of Parameter Setting in Real-Coded Evolutionary Algorithms , 2010, PPSN.

[2]  Kenneth de Jong Parameter Setting in EAs: a 30 Year Perspective , 2007 .

[3]  Terry Speed Statistics for Experimenters: Design, Innovation, and Discovery (2nd ed.) , 2006 .

[4]  Kenneth A. De Jong,et al.  A formal analysis of the role of multi-point crossover in genetic algorithms , 1992, Annals of Mathematics and Artificial Intelligence.

[5]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[6]  Alex A. Freitas,et al.  Evolutionary Computation , 2002 .

[7]  J. S. Hunter,et al.  Statistics for Experimenters: Design, Innovation, and Discovery , 2006 .

[8]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice , 2002 .

[9]  Thomas Bartz-Beielstein,et al.  Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.

[10]  Zbigniew Michalewicz,et al.  An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms , 1991, ICGA.

[11]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[12]  Thomas W. Lucas,et al.  Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes , 2007, Technometrics.

[13]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[14]  Thomas Bartz-Beielstein,et al.  Sequential parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[15]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[16]  Alice E. Smith,et al.  Expected Allele Coverage and the Role of Mutation in Genetic Algorithms , 1993, ICGA.

[17]  James J. Filliben,et al.  Comparing VM-Placement Algorithms for On-Demand Clouds , 2011, CloudCom.

[18]  Pedro A. Diaz-Gomez,et al.  Three interconnected parameters for genetic algorithms , 2009, GECCO '09.

[19]  Thomas Bartz-Beielstein,et al.  Experimental research in evolutionary computation , 2007, GECCO '07.

[20]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[21]  Onur BOYABATLI,et al.  Parameter Selection in Genetic Algorithms , 2004 .

[22]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[23]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[24]  V. Kapoor An Empirical Study of the Role of Control Parameters of Genetic Algorithms in Function Optimization Problems , 2011 .

[25]  S. Santhosh Baboo,et al.  Secured Distance Vector Routing (SDVR) Protocol for Mobile Ad-hoc Networks , 2011 .

[26]  Laura Núñez-Letamendia,et al.  Fitting the control parameters of a genetic algorithm: An application to technical trading systems design , 2007, Eur. J. Oper. Res..

[27]  Paul Charbonneau,et al.  An Introduction to Genetic Algorithms for Numerical Optimization , 2002 .

[28]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[29]  Jack P. C. Kleijnen,et al.  Design and Analysis of Computational Experiments: Overview , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[30]  James J. Filliben,et al.  Combining Genetic Algorithms & Simulation to Search for Failure Scenarios in System Models | NIST , 2013 .

[31]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  Michael O. Odetayo,et al.  Empirical study of the interdependencies of genetic algorithm parameters , 1997, EUROMICRO 97. Proceedings of the 23rd EUROMICRO Conference: New Frontiers of Information Technology (Cat. No.97TB100167).

[33]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[34]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[35]  Christopher E. Dabrowski,et al.  Combining Genetic Algorithms and Simulation to Search for Failure Scenarios in System Models , 2013 .

[36]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[37]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[38]  Héctor Pomares,et al.  Statistical analysis of the main parameters involved in the design of a genetic algorithm , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[39]  Konstantinos G. Margaritis,et al.  On benchmarking functions for genetic algorithms , 2001, Int. J. Comput. Math..

[40]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[41]  Xin-She Yang,et al.  A literature survey of benchmark functions for global optimisation problems , 2013, Int. J. Math. Model. Numer. Optimisation.

[42]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[43]  Ismet Sahin,et al.  Random Lines: A Novel Population Set-Based Evolutionary Global Optimization Algorithm , 2011, EuroGP.

[44]  Kenneth DeJong,et al.  Parameter Setting in EAs: a 30 Year Perspective , 2007, Parameter Setting in Evolutionary Algorithms.

[45]  Ernesto P. Adorio,et al.  MVF - Multivariate Test Functions Library in C for Unconstrained Global Optimization , 2005 .

[46]  Christine June Sexton Designing industrial experiments with restricted experimental resources , 1998 .

[47]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..