Vertex Cover Reconfiguration and Beyond

In the Vertex Cover Reconfiguration (VCR) problem, given a graph $G$, positive integers $k$ and $\ell$, and two vertex covers $S$ and $T$ of $G$ of size at most $k$, we determine whether $S$ can be transformed into $T$ by a sequence of at most $\ell$ vertex additions or removals such that every operation results in a vertex cover of size at most $k$. Motivated by results establishing the W[1]-hardness of VCR when parameterized by $\ell$, we delineate the complexity of the problem restricted to various graph classes. In particular, we show that VCR remains w[1]-hard on bipartite graphs, is NP-hard but fixed-parameter tractable on (regular) graphs of bounded degree, and is solvable in polynomial time on trees and (with some additional restrictions) on cactus graphs.

[1]  Naomi Nishimura,et al.  On the Parameterized Complexity of Reconfiguration Problems , 2013, IPEC.

[2]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[3]  Frank Harary,et al.  Graph Theory , 2016 .

[4]  Takehiro Ito,et al.  Reconfiguration of List L(2, 1)-Labelings in a Graph , 2012, ISAAC.

[5]  Christos H. Papadimitriou,et al.  The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies , 2006, SIAM J. Comput..

[6]  P. Hall On Representatives of Subsets , 1935 .

[7]  Martin Milanic,et al.  Complexity of independent set reconfigurability problems , 2012, Theor. Comput. Sci..

[8]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[9]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[10]  Leizhen Cai,et al.  Random Separation: A New Method for Solving Fixed-Cardinality Optimization Problems , 2006, IWPEC.

[11]  Naomi Nishimura,et al.  Vertex Cover Reconfiguration and Beyond , 2014, ISAAC.

[12]  Jan van den Heuvel,et al.  Connectedness of the graph of vertex-colourings , 2008, Discret. Math..

[13]  Naomi Nishimura,et al.  On the Parameterized Complexity of Reconfiguration Problems , 2013, Algorithmica.

[14]  Erik D. Demaine,et al.  PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation , 2002, Theor. Comput. Sci..

[15]  Stephen T. Hedetniemi,et al.  Γ-graphs of Graphs , 2011, Discuss. Math. Graph Theory.

[16]  Paul S. Bonsma,et al.  The complexity of rerouting shortest paths , 2010, Theor. Comput. Sci..

[17]  Mam Riess Jones Color Coding , 1962, Human factors.

[18]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[19]  Takehiro Ito,et al.  Reconfiguration of list edge-colorings in a graph , 2012, Discret. Appl. Math..

[20]  Stephan Kreutzer,et al.  Deciding first-order properties of nowhere dense graphs , 2013, STOC.

[21]  Venkatesh Raman,et al.  Parameterized complexity of finding subgraphs with hereditary properties , 2000, Theor. Comput. Sci..

[22]  Naomi Nishimura,et al.  Reconfiguration of dominating sets , 2014, J. Comb. Optim..

[23]  Jaroslav Nesetril,et al.  On nowhere dense graphs , 2011, Eur. J. Comb..

[24]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[25]  Michael R. Fellows,et al.  Local Search: Is Brute-Force Avoidable? , 2009, IJCAI.

[26]  Takehiro Ito,et al.  Reconfiguration of Vertex Covers in a Graph , 2014, IWOCA.

[27]  GRAPHSJOSEPH G. CONLONAbstra EVEN CYCLES IN GRAPHS , 2007 .

[28]  Michael R. Fellows,et al.  Kernelization Algorithms for the Vertex Cover Problem: Theory and Experiments , 2004, ALENEX/ANALC.

[29]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[30]  Naomi Nishimura,et al.  Reconfiguration of Dominating Sets , 2014, COCOON.

[31]  Michael R. Fellows,et al.  Linear Kernels in Linear Time, or How to Save k Colors in O(n2) Steps , 2004, WG.

[32]  Martin Milanic,et al.  Shortest paths between shortest paths , 2011, Theor. Comput. Sci..

[33]  Takehiro Ito,et al.  On the complexity of reconfiguration problems , 2008, Theor. Comput. Sci..