Observations of ion-beam formation in a current-free double layer.

With nonperturbative laser-induced fluorescence measurements of ion flow, we confirm numerical simulations of spontaneous electric double-layer (DL) formation in a current-free expanding plasma. Measurements in two different experiments confirm that the DL is localized to the region of rapidly diverging magnetic field. The measurements indicate that the trapped ion population is a single Maxwellian, that the spatial gradient of the energy of ions accelerated through the DL matches the magnetic field gradient, and that DL formation is triggered when the ion-neutral collisional mean-free path exceeds the magnetic field gradient scale length.

[1]  A. Meige,et al.  One-dimensional simulation of an ion beam generated by a current-free double-Layer , 2005, IEEE Transactions on Plasma Science.

[2]  C. Charles,et al.  One-dimensional particle-in-cell simulation of a current-free double layer in an expanding plasma , 2005 .

[3]  N. Plihon,et al.  Double layer formation in the expanding region of an inductively coupled electronegative plasma , 2005, 1504.02313.

[4]  E. Scime,et al.  Laser-induced fluorescence measurements of three plasma species with a tunable diode laser , 2004 .

[5]  C. Charles,et al.  Time development of a current-free double-layer , 2004 .

[6]  Xuan Sun,et al.  Parallel velocity and temperature of argon ions in an expanding, helicon source driven plasma , 2004 .

[7]  C. Charles Hydrogen ion beam generated by a current-free double layer in a helicon plasma , 2004 .

[8]  E. Scime,et al.  Laser induced fluorescence in Ar and He plasmas with a tunable diode laser , 2003 .

[9]  F. Levinton,et al.  Ion acceleration in plasmas emerging from a helicon-heated magnetic-mirror device , 2003 .

[10]  Christine Charles,et al.  Current-free double-layer formation in a high-density helicon discharge , 2003 .

[11]  J. Kline,et al.  Ion dynamics in helicon sources , 2003 .

[12]  R. Ergun,et al.  Formation of double layers and electron holes in a current-driven space plasma. , 2001, Physical review letters.

[13]  M. Lieberman,et al.  Absolute measurements and modeling of radio frequency electric fields using a retarding field energy analyzer , 2000 .

[14]  R. Schrittwieser,et al.  Observation of double layers in a convergent magnetic field , 1992 .

[15]  Richard A. Gottscho,et al.  Ion transport in an electron cyclotron resonance plasma , 1991 .

[16]  C. Charles,et al.  Plasma diffusion from a low pressure radio frequency source , 1991 .

[17]  R. Gottscho,et al.  Spatially resolved ion velocity distributions in a diverging field electron cyclotron resonance plasma reactor , 1990 .

[18]  Takeda,et al.  Observations of the spatial evolution of a potential hump into a strong double layer in a high-voltage straight plasma discharge. , 1985, Physical review letters.

[19]  P. Lalousis,et al.  Analysis of the inverted double layers produced by nonlinear forces in a laser-produced plasma , 1984 .

[20]  N. Hershkowitz,et al.  Laboratory evidence for ion-acoustic-type double layers , 1984 .

[21]  F. Perkins,et al.  Double layers without current , 1981 .

[22]  Noah Hershkowitz,et al.  Laboratory double layers , 1979 .

[23]  A. Wong,et al.  Formation of potential double layers in plasmas , 1976 .

[24]  G. Joyce,et al.  Numerical simulation of the plasma double layer , 1975 .

[25]  William B. Bridges,et al.  Ion laser plasmas , 1971 .

[26]  P. Lindstrom,et al.  Auroral-Particle Precipitation and Trapping Caused by Electrostatic Double Layers in the Ionosphere , 1970, Science.

[27]  H. Alfvén A theory of magnetic storms and of the aurorae , 1958 .

[28]  Eugene N. Parker,et al.  Sweet's mechanism for merging magnetic fields in conducting fluids , 1957 .