Semidiscrete Geometric Flows of Polygons

[1]  Thierry Jecko,et al.  POLYGON SHORTENING MAKES (MOST) QUADRILATERALS CIRCULAR , 2002 .

[2]  Gerhard Huisken,et al.  A distance comparison principle for evolving curves , 1998 .

[3]  I. J. Schoenberg The Finite Fourier Series and Elementary Geometry , 1950 .

[4]  M. Grayson Shortening embedded curves , 1989 .

[5]  U. Abresch,et al.  The normalized curve shortening flow and homothetic solutions , 1986 .

[6]  Guillermo Sapiro,et al.  Evolutions of Planar Polygons , 1995, Int. J. Pattern Recognit. Artif. Intell..

[7]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[8]  R. Hamilton ISOPERIMETRIC ESTIMATES FOR THE CURVE SHRINKING FLOW IN THE PLANE , 1996 .

[9]  M. Gage,et al.  An isoperimetric inequality with applications to curve shortening , 1983 .

[10]  Kai-Seng Chou,et al.  The Curve Shortening Problem , 2001 .

[11]  Daniel B. Shapiro,et al.  A Periodicity Problem in Plane Geometry , 1984 .

[12]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[13]  Geoffrey C. Shephard,et al.  A Polygon Problem , 1996 .

[14]  S. Angenent On the formation of singularities in the curve shortening flow , 1991 .

[15]  Yun Yang,et al.  Curve Shortening Flow in Arbitrary Dimensional Euclidian Space , 2005 .

[16]  Gerhard Dziuk,et al.  CONVERGENCE OF A SEMI-DISCRETE SCHEME FOR THE CURVE SHORTENING FLOW , 1994 .

[17]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[18]  Kazuaki Nakayama,et al.  A discrete curve-shortening equation , 1997 .

[19]  Steven J. Altschuler,et al.  Singularities of the curve shrinking flow for space curves , 1991 .