Cohen-Macaulay edge ideal whose height is half of the number of vertices
暂无分享,去创建一个
[1] Edgar E. Enochs,et al. On Cohen-Macaulay rings , 1994 .
[2] S. Yassemi,et al. Bipartite $S_2$ graphs are Cohen-Macaulay , 2010, 1001.3752.
[3] Takayuki Hibi,et al. The monomial ideal of a finite meet-semilattice , 2003 .
[4] I. Gitler,et al. Bounds for graph invariants , 2005 .
[5] Frank Harary,et al. Graph Theory , 2016 .
[6] Sara Faridi. Cohen-Macaulay properties of square-free monomial ideals , 2005, J. Comb. Theory, Ser. A.
[7] R. Stanley. Combinatorics and commutative algebra , 1983 .
[8] H. Priestley,et al. Distributive Lattices , 2004 .
[9] Rafael H. Villarreal,et al. COHEN-MACAULAY, SHELLABLE AND UNMIXED CLUTTERS WITH A PERFECT MATCHING OF K ¨ , 2007, 0708.3111.
[10] Rafael H. Villarreal,et al. Shellable graphs and sequentially Cohen-Macaulay bipartite graphs , 2008, J. Comb. Theory, Ser. A.
[11] J. Okninski,et al. On monomial algebras , 1988, Semigroup Algebras.
[12] Rafael H. Villarreal,et al. Cohen-macaulay graphs , 1990 .
[13] 日比 孝之,et al. Algebraic combinatorics on convex polytopes , 1992 .
[14] I. Gitler,et al. Bounds For Invariants of Edge-Rings , 2005 .
[15] Takayuki Hibi,et al. Distributive Lattices, Bipartite Graphs and Alexander Duality , 2003 .
[16] W. Vogel,et al. Buchsbaum Rings and Applications: An Interaction Between Algebra, Geometry and Topology , 1987 .
[17] Rafael H. Villarreal. Unmixed bipartite graphs , 2006 .