Electrochemical Behavior of Menadione on Glassy Carbon Rotating Disk Electrode (RDE)

The 2-methyl-1,4-naphthoquinone electrochemical behavior on glassy carbon rotating disk electrode has been the focus of this study. In order to obtain the best results, the optimal conditions for this voltammetric study have been determined, by performing a chemometric analysis of the data. The influence of five factors on the diffusion current has been studied, finding that the greatest effect is due to three of them. The optimum values for all of these parameters were: pH 7, v (potential sweep rate)=87.1 mV/s, Cmet (methanol concentration)=4.14 %(v/v), teq (equilibrium time)=2.5 min, and tdea (purge time)=2 min. These data were used to determine the mass transfer parameters: diffusion coefficient (D=(1.4±0.3)×10–4 cm2/s) and diffusion layer thickness (δ=(6.6±0.5)×10–3 cm), the kinetic parameters: charge transfer constant (K0=2.91×10–6 cm/s) and charge transfer coefficient (α=0.248), and the standard potential (E0=0.083±0.011 V).

[1]  S. Sanllorente,et al.  Optimization of influent factors on nucleation process of copper in solutions containing thiourea using an experimental design , 1998 .

[2]  M. Arcos,et al.  Optimization of digestion procedure for the determination of nickel in wine by differential-pulse adsorptive stripping voltammetry , 1998 .

[3]  M. C. Ortiz,et al.  Multivariate calibration transfer applied to the routine polarographic determination of copper, lead, cadmium and zinc , 1997 .

[4]  J. Raoof,et al.  Catalysis of dioxygen reduction to hydrogen peroxide at the surface of carbon paste electrodes modified by 1,4-naphthoquinone and some of its derivatives , 1996 .

[5]  M. C. Ortiz,et al.  Application of an optimization procedure in adsorptive stripping voltammetry to the determination of nickel with DMG , 1996 .

[6]  S. Furlanetto,et al.  Optimization by experimental design of the adsorptive stripping voltammetric parameters in the determination of cinoxacin , 1995 .

[7]  S. Golabi,et al.  ELECTROCHEMICAL PROPERTIES OF CARBON-PASTE ELECTRODES SPIKED WITH SOME 1,4-NAPHTHOQUINONE DERIVATIVES , 1995 .

[8]  J. Saurina,et al.  Simultaneous determination of several amino acids with multivariate calibration methods by using a continuous-flow system , 1995 .

[9]  K. Kano,et al.  Surface-Redox Reaction Mechanism of Quinones Adsorbed on Basal-Plane Pyrolytic Graphite Electrodes. , 1993 .

[10]  Wan-Shiang J Wu,et al.  ELECTROCHEMICAL PROPERTIES AND ELECTROCATALYTIC CHARACTERISTICS OF SOLUBLEPOLYANILINE , 1993 .

[11]  M. Bouguerra,et al.  Oxydation électrochimique du naphtalène : analyse des produits d'oxydation par électrochimie en couche mince , 1992 .

[12]  M. Fleischmann,et al.  The behavior of microdisk electrodes: Chronopotentiometry and linear sweep voltammetric experiments , 1989 .

[13]  K. Aoki,et al.  Chronopotentiometry at very small stationary disk electrodes , 1985 .

[14]  W. Heineman,et al.  Laboratory techniques in electroanalytical chemistry , 1984 .

[15]  G. Patriarche Etude électrochimique de la naphtoquinone-1,4 et des vitamines de la série K. I. -Naphtoquinone - 1.4 , 1978 .

[16]  G. Patriarche Etude électrochimique de la naphtoquinone-1,4 et des vitamines de la série K. II. - Vitamines K1 et K3 , 1978 .

[17]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[18]  B. McDuffie,et al.  Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry , 1970 .

[19]  J. Lingane,et al.  Electrochemical characteristics of 2-methyl-1,4-naphthoquinone (vitamin K3) , 1970 .

[20]  P. Zuman The Elucidation Of Organic Electrode Processes , 1969 .

[21]  K. Burger Analytical control methods for polyvitamin preparations , 1963 .