Microbial modulation of energy availability in the colon regulates intestinal transit.

[1]  L. Ursell,et al.  Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. , 2013, Gastroenterology.

[2]  S. Woods,et al.  The Anorectic Effect of GLP-1 in Rats Is Nutrient Dependent , 2012, PloS one.

[3]  A. Wali,et al.  Microbial Regulation of Glucose Metabolism and Cell-Cycle Progression in Mammalian Colonocytes , 2012, PloS one.

[4]  V. Tremaroli,et al.  Functional interactions between the gut microbiota and host metabolism , 2012, Nature.

[5]  F. Reimann,et al.  Nutrient detection by incretin hormone secreting cells , 2012, Physiology & Behavior.

[6]  A. M. Habib,et al.  Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein–Coupled Receptor FFAR2 , 2012, Diabetes.

[7]  M. Horowitz,et al.  Effects of GLP-1 and Incretin-Based Therapies on Gastrointestinal Motor Function , 2011, Experimental diabetes research.

[8]  Wei Sun,et al.  The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. , 2011, Cell metabolism.

[9]  T. Wolever,et al.  Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects , 2009, British Journal of Nutrition.

[10]  R. Tulley,et al.  Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. , 2008, American journal of physiology. Endocrinology and metabolism.

[11]  Masashi Yanagisawa,et al.  Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41 , 2008, Proceedings of the National Academy of Sciences.

[12]  Takuya Suzuki,et al.  Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability , 2008, British Journal of Nutrition.

[13]  R. Knight,et al.  Evolution of Mammals and Their Gut Microbes , 2008, Science.

[14]  J. Holst The physiology of glucagon-like peptide 1. , 2007, Physiological reviews.

[15]  B. Estour,et al.  Constitutional thinness and lean anorexia nervosa display opposite concentrations of peptide YY, glucagon-like peptide 1, ghrelin, and leptin. , 2007, The American journal of clinical nutrition.

[16]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[17]  H. Hara,et al.  Two-week feeding of difructose anhydride III enhances calcium absorptive activity with epithelial cell proliferation in isolated rat cecal mucosa. , 2006, Nutrition.

[18]  Patrice D Cani,et al.  A place for dietary fibre in the management of the metabolic syndrome , 2005, Current opinion in clinical nutrition and metabolic care.

[19]  Patrice D Cani,et al.  Impact of inulin and oligofructose on gastrointestinal peptides , 2005, British Journal of Nutrition.

[20]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[21]  T. Brunner,et al.  Intestinal Epithelial Cells Synthesize Glucocorticoids and Regulate T Cell Activation , 2004, The Journal of experimental medicine.

[22]  Ting Wang,et al.  The gut microbiota as an environmental factor that regulates fat storage. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  B. Le Bizec,et al.  Simultaneous measurement of plasma concentrations and 13C-enrichment of short-chain fatty acids, lactic acid and ketone bodies by gas chromatography coupled to mass spectrometry. , 2003, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[24]  G. Greenberg,et al.  Prolonged gastrointestinal transit in a patient with a glucagon-like peptide (GLP)-1- and -2-producing neuroendocrine tumor. , 2002, The Journal of clinical endocrinology and metabolism.

[25]  M. Byrne,et al.  Intestinal Proliferation and Delayed Intestinal Transit in a Patient with a GLP-1-, GLP-2- and PYY-Producing Neuroendocrine Carcinoma , 2001, Digestion.

[26]  J. Pácha Development of intestinal transport function in mammals. , 2000, Physiological reviews.

[27]  P. Vergara,et al.  Glucagonlike Peptide-1 (GLP-1) Participation in Ileal Brake Induced by Intraluminal Peptones in Rat , 1999, Digestive Diseases and Sciences.

[28]  J. Holst,et al.  Release of glucagon-like peptide 1 (GLP-1 [7-36 amide]), gastric inhibitory polypeptide (GIP) and insulin in response to oral glucose after upper and lower intestinal resections. , 1996, Zeitschrift fur Gastroenterologie.

[29]  H. Vermeer,et al.  Glucagon‐like peptide‐1 cells in the gastrointestinal tract and pancreas of rat, pig and man , 1992, European journal of clinical investigation.

[30]  W. Whitehead,et al.  Delayed gastrointestinal transit times in anorexia nervosa and bulimia nervosa. , 1991, Gastroenterology.

[31]  E. N. Bergman Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. , 1990, Physiological reviews.

[32]  D. Clark,et al.  The fermentation pathways of Escherichia coli. , 1989, FEMS microbiology reviews.

[33]  J. Cummings,et al.  Effect of changing transit time on colonic microbial metabolism in man. , 1987, Gut.

[34]  T. Midtvedt,et al.  Short-chain fatty acids in germfree mice and rats. , 1986, The Journal of nutrition.

[35]  W. Roediger Utilization of nutrients by isolated epithelial cells of the rat colon. , 1982, Gastroenterology.

[36]  W. Roediger Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. , 1980, Gut.

[37]  Mihai Pop,et al.  Microbiome Metagenomic Analysis of the Human Distal Gut , 2009 .

[38]  Lynn K. Carmichael,et al.  A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. , 2003, Science.

[39]  H. Hara,et al.  Ingestion of guar gum hydrolysate, a soluble fiber, increases calcium absorption in totally gastrectomized rats. , 1999, The Journal of nutrition.