An iterative Bayesian filtering framework for fast and automated calibration of DEM models

Abstract The nonlinear, history-dependent macroscopic behavior of a granular material is rooted in the micromechanics between constituent particles and irreversible, plastic deformations reflected by changes in the microstructure. The discrete element method (DEM) can predict the evolution of the microstructure resulting from interparticle interactions. However, micromechanical parameters at contact and particle levels are generally unknown because of the diversity of granular materials with respect to their surfaces, shapes, disorder and anisotropy. The proposed iterative Bayesian filter consists in recursively updating the posterior distribution of model parameters and iterating the process with new samples drawn from a proposal density in highly probable parameter spaces. Over iterations the proposal density is progressively localized near the posterior modes, which allows automated zooming towards optimal solutions. The Dirichlet process Gaussian mixture is trained with sparse and high dimensional data from the previous iteration to update the proposal density. As an example, the probability distribution of the micromechanical parameters is estimated, conditioning on the experimentally measured stress–strain behavior of a granular assembly. Four micromechanical parameters, i.e., contact-level Young’s modulus, interparticle friction, rolling stiffness and rolling friction, are chosen as strongly relevant for the macroscopic behavior. The a priori particle configuration is obtained from 3D X-ray computed tomography images. The a posteriori expectation of each micromechanical parameter converges within four iterations, leading to an excellent agreement between the experimental data and the numerical predictions. As new result, the proposed framework provides a deeper understanding of the correlations among micromechanical parameters and between the micro- and macro-parameters/quantities of interest, including their uncertainties. Therefore, the iterative Bayesian filtering framework has a great potential for quantifying parameter uncertainties and their propagation across various scales in granular materials.

[2]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[3]  Klaus Thoeni,et al.  Efficient discrete modelling of composite structures for rockfall protection , 2017 .

[4]  P. Koumoutsakos,et al.  Data driven inference for the repulsive exponent of the Lennard-Jones potential in molecular dynamics simulations , 2017, Scientific Reports.

[5]  J. Halton Sequential monte carlo techniques for the solution of linear systems , 1994 .

[6]  P. Leeuwen,et al.  Nonlinear data assimilation in geosciences: an extremely efficient particle filter , 2010 .

[7]  Jianfeng Wang,et al.  3D quantitative shape analysis on form, roundness, and compactness with μCT , 2016 .

[8]  He Huang,et al.  A Simple Multiscale Model for Granular Soils with Geosynthetic Inclusion , 2016 .

[9]  Christopher M. Wensrich,et al.  Rolling friction as a technique for modelling particle shape in DEM , 2012 .

[10]  M. Oda,et al.  Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM , 1998 .

[11]  S. Heinrich,et al.  Contact models based on experimental characterization of irregular shaped, micrometer-sized particles , 2014 .

[12]  Carl E. Rasmussen,et al.  The Infinite Gaussian Mixture Model , 1999, NIPS.

[13]  T. Higuchi,et al.  Merging particle filter for sequential data assimilation , 2007 .

[14]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[15]  H. Makse,et al.  Characterizing the shear and bulk moduli of an idealized granular material , 2008 .

[16]  C. J. Coetzee,et al.  Review: Calibration of the discrete element method , 2017 .

[17]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[18]  J. Oden,et al.  Calibration and validation of coarse-grained models of atomic systems: application to semiconductor manufacturing , 2014 .

[19]  Roland W. Lewis,et al.  Coarse optimization for complex systems: an application of orthogonal experiments , 1992 .

[20]  Christian Gagné,et al.  Evolutionary optimization of low-discrepancy sequences , 2012, TOMC.

[21]  J. Oden,et al.  Adaptive selection and validation of models of complex systems in the presence of uncertainty , 2017, Research in the Mathematical Sciences.

[22]  A. Misra,et al.  Thermomechanical formulation for micromechanical elasto-plasticity in granular materials , 2017 .

[23]  Katalin Bagi,et al.  An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies , 2005 .

[24]  Genshiro Kitagawa,et al.  Monte Carlo Smoothing and Self-Organising State-Space Model , 2001, Sequential Monte Carlo Methods in Practice.

[25]  Hai-Sui Yu,et al.  A novel discrete model for granular material incorporating rolling resistance , 2005 .

[26]  Costas Papadimitriou,et al.  Bayesian uncertainty quantification and propagation for discrete element simulations of granular materials , 2014 .

[27]  Dingena L. Schott,et al.  A calibration framework for discrete element model parameters using genetic algorithms , 2018, Advanced Powder Technology.

[28]  Kevin J. Hanley,et al.  A Methodical Calibration Procedure for Discrete Element Models , 2017 .

[29]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[30]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[31]  Costas Papadimitriou,et al.  Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models , 2015, J. Comput. Phys..

[32]  D. Pasetto,et al.  Coupled inverse modeling of a controlled irrigation experiment using multiple hydro-geophysical data , 2015 .

[33]  Klaus Thoeni,et al.  Probabilistic calibration of discrete element simulations using the sequential quasi-Monte Carlo filter , 2018 .

[34]  E. Hugh Stitt,et al.  A parametric evaluation of powder flowability using a Freeman rheometer through statistical and sensitivity analysis: A discrete element method (DEM) study , 2017, Comput. Chem. Eng..

[35]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[36]  Haruyuki Yamamoto,et al.  Numerical study on stress states and fabric anisotropies in soilbags using the DEM , 2016 .

[37]  H. Sebastian Seung,et al.  Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification , 2017, Bioinform..

[38]  Ning Guo,et al.  3D multiscale modeling of strain localization in granular media , 2016 .

[39]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[40]  Y. Feng,et al.  Towards stochastic discrete element modelling of spherical particles with surface roughness: A normal interaction law , 2017 .

[41]  Alessandro Tengattini,et al.  Kalisphera: an analytical tool to reproduce the partial volume effect of spheres imaged in 3D , 2015 .

[42]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[43]  Shen Yin,et al.  Intelligent Particle Filter and Its Application to Fault Detection of Nonlinear System , 2015, IEEE Transactions on Industrial Electronics.

[44]  Simon R. Phillpot,et al.  Uncertainty Quantification in Multiscale Simulation of Materials: A Prospective , 2013 .

[45]  Phani Chavali,et al.  Hierarchical particle filtering for multi-modal data fusion with application to multiple-target tracking , 2014, Signal Process..

[46]  Hongbing Ji,et al.  Iterative particle filter for visual tracking , 2015, Signal Process. Image Commun..

[47]  Pinnaduwa Kulatilake,et al.  Physical and particle flow modeling of jointed rock block behavior under uniaxial loading , 2001 .

[48]  J. Tinsley Oden,et al.  Virtual model validation of complex multiscale systems: Applications to nonlinear elastostatics , 2013 .

[49]  Stefan Pirker,et al.  Identification of DEM simulation parameters by Artificial Neural Networks and bulk experiments , 2016 .

[50]  Gioacchino Viggiani,et al.  Towards a more accurate characterization of granular media: extracting quantitative descriptors from tomographic images , 2013, Granular Matter.

[51]  Michael I. Jordan,et al.  Nonparametric empirical Bayes for the Dirichlet process mixture model , 2006, Stat. Comput..

[52]  Hilbert J. Kappen,et al.  Particle Smoothing for Hidden Diffusion Processes: Adaptive Path Integral Smoother , 2016, IEEE Transactions on Signal Processing.

[53]  P. Wriggers,et al.  A two-scale model of granular materials , 2012 .

[54]  ZhangYongquan,et al.  Iterative particle filter for visual tracking , 2015 .

[55]  Matteo Rossi,et al.  An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment , 2015, J. Comput. Phys..

[56]  Philippe Andrey,et al.  MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ , 2016, Bioinform..

[57]  Catherine O'Sullivan,et al.  Application of Taguchi methods to DEM calibration of bonded agglomerates , 2011 .

[58]  Hilbert J. Kappen,et al.  Adaptive Importance Sampling for Control and Inference , 2015, ArXiv.

[59]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[60]  S. Luding,et al.  Rolling, sliding and torsion of micron-sized silica particles: experimental, numerical and theoretical analysis , 2014 .

[61]  Haruyuki Yamamoto,et al.  An analytical solution for geotextile-wrapped soil based on insights from DEM analysis , 2017 .

[62]  Mical William Johnstone Calibration of DEM models for granular materials using bulk physical tests , 2010 .

[63]  Omar Ghattas,et al.  From SIAM News , Volume 43 , Number 10 , December 2010 Computer Predictions with Quantified Uncertainty , Part II , 2010 .

[64]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[65]  Marc G. D. Geers,et al.  A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials , 2017, J. Comput. Phys..

[66]  Carl E. Rasmussen,et al.  Dirichlet Process Gaussian Mixture Models: Choice of the Base Distribution , 2010, Journal of Computer Science and Technology.

[67]  C. O’Sullivan Particulate Discrete Element Modelling: A Geomechanics Perspective , 2011 .

[68]  A. Eulitz,et al.  Yade Documentation 2nd ed , 2015 .

[69]  Jeoung Seok Yoon,et al.  Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation , 2007 .

[70]  Ivo Babuška,et al.  Predictive Computational Science: Computer Predictions in the Presence of Uncertainty , 2017 .

[71]  Costas Papadimitriou,et al.  Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework. , 2012, The Journal of chemical physics.

[72]  Xikui Li,et al.  A bridging scale method for granular materials with discrete particle assembly – Cosserat continuum modeling , 2011 .

[73]  Arnaud Doucet,et al.  Bayesian Inference for Linear Dynamic Models With Dirichlet Process Mixtures , 2007, IEEE Transactions on Signal Processing.

[74]  H. Khoa,et al.  Probabilistic Calibration of a Discrete Particle Model for Geomaterials , 2011 .

[75]  J. Tinsley Oden,et al.  Selection, calibration, and validation of coarse-grained models of atomistic systems , 2015 .

[76]  B. Chareyre,et al.  A pore-scale method for hydromechanical coupling in deformable granular media , 2017 .