Piecewise linear conditional information inequality
暂无分享,去创建一个
[1] Zhen Zhang,et al. On a new non-Shannon-type information inequality , 2002, Proceedings IEEE International Symposium on Information Theory,.
[2] Zhen Zhang,et al. A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.
[3] Zhen Zhang,et al. On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.
[4] F. Matús. PROBABILISTIC CONDITIONAL INDEPENDENCE STRUCTURES AND MATROID THEORY: BACKGROUND1 , 1993 .
[5] László Lovász,et al. Submodular functions and convexity , 1982, ISMP.
[6] H. Narayanan. Submodular functions and electrical networks , 1997 .
[7] John Cocke,et al. Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[8] Raymond W. Yeung,et al. A First Course in Information Theory , 2002 .
[9] Benjamin Weiss,et al. Commuting measure-preserving transformations , 1972 .
[10] 藤重 悟. Submodular functions and optimization , 1991 .
[11] František Matúš,et al. Conditional Independences among Four Random Variables III: Final Conclusion , 1999, Combinatorics, probability & computing.
[12] Frantisek Matús,et al. Matroid representations by partitions , 1999, Discret. Math..
[13] Satoru Fujishige,et al. Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..
[14] F. Mattt,et al. Conditional Independences among Four Random Variables Iii: Final Conclusion , 1999 .
[15] Abraham Lempel,et al. Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.