Piecewise linear conditional information inequality

A new information inequality of non-Shannon type is proved for three discrete random variables under conditional independence constraints, using the framework of entropy functions and polymatroids. Tightness of the inequality is described via quasi-groups

[1]  Zhen Zhang,et al.  On a new non-Shannon-type information inequality , 2002, Proceedings IEEE International Symposium on Information Theory,.

[2]  Zhen Zhang,et al.  A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.

[3]  Zhen Zhang,et al.  On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.

[4]  F. Matús PROBABILISTIC CONDITIONAL INDEPENDENCE STRUCTURES AND MATROID THEORY: BACKGROUND1 , 1993 .

[5]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[6]  H. Narayanan Submodular functions and electrical networks , 1997 .

[7]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[8]  Raymond W. Yeung,et al.  A First Course in Information Theory , 2002 .

[9]  Benjamin Weiss,et al.  Commuting measure-preserving transformations , 1972 .

[10]  藤重 悟 Submodular functions and optimization , 1991 .

[11]  František Matúš,et al.  Conditional Independences among Four Random Variables III: Final Conclusion , 1999, Combinatorics, probability & computing.

[12]  Frantisek Matús,et al.  Matroid representations by partitions , 1999, Discret. Math..

[13]  Satoru Fujishige,et al.  Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..

[14]  F. Mattt,et al.  Conditional Independences among Four Random Variables Iii: Final Conclusion , 1999 .

[15]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.