Representation of eye position in the human parietal cortex.

Neurons that signal eye position are thought to make a vital contribution to distinguishing real world motion from retinal motion caused by eye movements, but relatively little is known about such neurons in the human brain. Here we present data from functional MRI experiments that are consistent with the existence of neurons sensitive to eye position in darkness in the human posterior parietal cortex. We used the enhanced sensitivity of multivoxel pattern analysis (MVPA) techniques, combined with a searchlight paradigm, to isolate brain regions sensitive to direction of gaze. During data acquisition, participants were cued to direct their gaze to the left or right for sustained periods as part of a block-design paradigm. Following the exclusion of saccade-related activity from the data, the multivariate analysis showed sensitivity to tonic eye position in two localized posterior parietal regions, namely the dorsal precuneus and, more weakly, the posterior aspect of the intraparietal sulcus. Sensitivity to eye position was also seen in anterior portions of the occipital cortex. The observed sensitivity of visual cortical neurons to eye position, even in the total absence of visual stimulation, is possibly a result of feedback from posterior parietal regions that receive eye position signals and explicitly encode direction of gaze.

[1]  S. Celebrini,et al.  Gaze direction controls response gain in primary visual-cortex neurons , 1999, Nature.

[2]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[3]  K. Hoffmann,et al.  Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. , 1997, Journal of neurophysiology.

[4]  J. Culham,et al.  The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? , 2006, Neuropsychologia.

[5]  R F Lewis,et al.  Efference copy provides the eye position information required for visually guided reaching. , 1998, Journal of neurophysiology.

[6]  C. Galletti,et al.  Wide-Field Retinotopy Defines Human Cortical Visual Area V6 , 2006, The Journal of Neuroscience.

[7]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[8]  C. Galletti,et al.  Functional Properties of Neurons in the Anterior Bank of the Parieto‐occipital Sulcus of the Macaque Monkey , 1991, The European journal of neuroscience.

[9]  G. Leichnetz Connections of the medial posterior parietal cortex (area 7m) in the monkey , 2001, The Anatomical record.

[10]  F Bremmer,et al.  Eye position encoding in the macaque ventral intraparietal area (VIP). , 1999, Neuroreport.

[11]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Magnetic resonance imaging study of the parietal lobe: anatomic and radiologic correlations. , 2003, Advances in neurology.

[13]  E A Cabanis,et al.  Location of the human posterior eye field with functional magnetic resonance imaging. , 1996, Journal of neurology, neurosurgery, and psychiatry.

[14]  Martin Wiesmann,et al.  Asymmetric modulation of human visual cortex activity during 10° lateral gaze (fMRI study) , 2005, NeuroImage.

[15]  A. Opstal,et al.  Influence of eye position on activity in monkey superior colliculus. , 1995, Journal of neurophysiology.

[16]  Frank Bremmer,et al.  The encoding of saccadic eye movements within human posterior parietal cortex , 2004, NeuroImage.

[17]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[18]  H. Sakata,et al.  Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. , 1980, Journal of neurophysiology.

[19]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[20]  H. Hendin From the USA , 2003 .

[21]  F. A. Miles,et al.  Visual Motion and Its Role in the Stabilization of Gaze , 1992 .

[22]  J. Donoghue,et al.  Gaze Direction Modulates Finger Movement Activation Patterns in Human Cerebral Cortex , 1999, The Journal of Neuroscience.

[23]  S. Squatrito,et al.  Gaze field properties of eye position neurones in areas MST and 7a of the macaque monkey , 1996, Visual Neuroscience.

[24]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[25]  K. Hoffmann,et al.  Eye position effects in monkey cortex. II. Pursuit- and fixation-related activity in posterior parietal areas LIP and 7A. , 1997, Journal of neurophysiology.

[26]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[27]  M. Campos,et al.  Effects of eye position upon activity of neurons in macaque superior colliculus. , 2006, Journal of neurophysiology.

[28]  Velia Cardin,et al.  Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. , 2010, Cerebral cortex.

[29]  C. Galletti,et al.  Human V6: The Medial Motion Area , 2009, Cerebral cortex.

[30]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[31]  C. Galletti,et al.  Functional Demarcation of a Border Between Areas V6 and V6A in the Superior Parietal Gyrus of the Macaque Monkey , 1996, The European journal of neuroscience.

[32]  C. Galletti,et al.  Eye Position Influence on the Parieto‐occipital Area PO (V6) of the Macaque Monkey , 1995, The European journal of neuroscience.

[33]  A. Cavanna,et al.  The precuneus: a review of its functional anatomy and behavioural correlates. , 2006, Brain : a journal of neurology.

[34]  H. H. Chung,et al.  Dynamic representation of eye position in the parieto-occipital sulcus. , 1999, Journal of neurophysiology.

[35]  A. Schleicher,et al.  Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. , 2008, Cerebral cortex.

[36]  I P Howard The stability of the visual world. , 1993, Reviews of oculomotor research.

[37]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[38]  C. Colby Action-Oriented Spatial Reference Frames in Cortex , 1998, Neuron.

[39]  Emilio Bizzi,et al.  Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys , 1968, Experimental Brain Research.

[40]  D. Heeger,et al.  Topographic organization for delayed saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[41]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[42]  Justin L. Vincent,et al.  Precuneus shares intrinsic functional architecture in humans and monkeys , 2009, Proceedings of the National Academy of Sciences.

[43]  C. Galletti,et al.  Gaze-dependent visual neurons in area V3A of monkey prestriate cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  John M. Allman,et al.  The Effect of Gaze Angle and Fixation Distance on the Responses of Neurons in V1, V2, and V4 , 2002, Neuron.

[45]  Tutis Vilis,et al.  Eye position signals modulate early dorsal and ventral visual areas. , 2002, Cerebral cortex.

[46]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.