On singular perturbations for differential inclusions on the infinite interval

Abstract We consider a differential inclusion subject to a singular perturbation, i.e., part of the derivatives are multiplied by a small parameter ɛ > 0 . We show that under some stability and structural assumptions, every solution of the singularly perturbed inclusion comes close to a solution of the degenerate inclusion (obtained for ɛ = 0 ) when ɛ tends to 0. The goal of the present paper is to provide a new result of Tikhonov type on the time interval [ 0 , + ∞ [ .

[1]  Zvi Artstein,et al.  Singularly perturbed ordinary differential equations with dynamic limits , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  Zvi Artstein,et al.  Invariant Measures of Differential Inclusions Applied to Singular Perturbations , 1999 .

[3]  A. Vigodner Limits of Singularly Perturbed Control Problems with Statistical Dynamics of Fast Motions , 1997 .

[4]  A. Dontchev,et al.  Singular Perturbation in Mayer’s Problem for Linear Systems , 1983 .

[5]  G. Grammel Averaging of singularly perturbed systems , 1997 .

[6]  Yu. S. Ledyaev,et al.  Qualitative properties of trajectories of control systems: A survey , 1995 .

[7]  A. Bacciotti,et al.  Liapunov functions and stability in control theory , 2001 .

[8]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[9]  P. Binding Singularly Perturbed Optimal Control Problems. I: Convergence , 1976 .

[10]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[11]  V. Veliov A generalization of the Tikhonov theorem for singularly perturbed differential inclusions , 1997 .

[12]  M. Quincampoix,et al.  Singular perturbations in non-linear optimal control systems , 1995, Differential and Integral Equations.

[13]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[14]  M. Quincampoix,et al.  Averaging method for discontinuous Mayer's problem of singularly perturbed control systems , 2003 .

[15]  A. Dontchev,et al.  A Tikhonov-type theorem for singularly perturbed differential inclusions , 1996 .

[16]  Götz Grammel Singularly perturbed differential inclusions: An averaging approach , 1996 .

[17]  Yu. S. Ledyaev,et al.  Asymptotic Stability and Smooth Lyapunov Functions , 1998 .

[18]  T. Donchev,et al.  Averaging Method for One-Sided Lipschitz Differential Inclusions with Generalized Solutions , 1999 .

[19]  Vladimir M. Veliov,et al.  Differential inclusions with stable subinclusions , 1994 .

[20]  M. Quincampoix Singular perturbations for systems of differential inclusions , 1995 .

[21]  K. Deimling Multivalued Differential Equations , 1992 .

[22]  Marc Quincampoix,et al.  Singular perturbations for differential equations and inclusions: an approach through constrained systems , 1998 .

[23]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[24]  V. Gaitsgory Suboptimization of singularly perturbed control systems , 1992 .

[25]  F. Hoppensteadt Singular perturbations on the infinite interval , 1966 .