Computational Complexity of Sparse Rational Interpolation

The authors analyze the computational complexity of sparse rational interpolation, and give the first deterministic algorithm for this problem with singly exponential bounds on the number of arithmetic operations.

[1]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[2]  CSL '88 , 1988, Lecture Notes in Computer Science.

[3]  Erich Kaltofen,et al.  Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[4]  Michael Willett,et al.  Factoring Polynomials over a Finite Field , 1978 .

[5]  Marek Karpinski,et al.  Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields , 1988, SIAM J. Comput..

[6]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[7]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[8]  Marek Karpinski,et al.  VC Dimension and Learnability of Sparse Polynomials and Rational Functions , 1989 .

[9]  Marek Karpinski,et al.  Interpolation of sparse rational functions without knowing bounds on exponents , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[10]  R. Evans,et al.  Generalized Vandermonde determinants and roots of unity of prime order , 1976 .

[11]  Erich Kaltofen,et al.  Uniform closure properties of P-computable functions , 1986, STOC '86.

[12]  Marek Karpinski,et al.  The Interpolation Problem for k-sparse Sums of Eigenfunctions of Operators , 1991 .

[13]  Allan Borodin,et al.  On the decidability of sparse univariate polynomial interpolation , 1990, STOC '90.

[14]  Friedhelm Meyer auf der Heide,et al.  On the Complexity of Genuinely Polynomial Computation , 1990, MFCS.

[15]  D. Grigor'ev Complexity of deciding Tarski algebra , 1988 .

[16]  Marek Karpinski,et al.  The matching problem for bipartite graphs with polynomially bounded permanents is in NC , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[17]  J. Verschelde Basic algebraic geometry: Igor R. Shafarevich Second, revised and expanded edition, translated by Miles Reid, Springer-Verlag, 1994 Volume 1: Varieties in projective space ISBN 3-540-54812-2, Softcover, DM 68. Volume 2: Schemes and complex manifolds ISBN 3-540-57554-5, Softcover, DM 68 , 1996 .

[18]  Richard Zippel,et al.  Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..

[19]  Victor Y. Pan,et al.  Some polynomial and Toeplitz matrix computations , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[20]  K. Mulmuley A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..

[21]  André Galligo,et al.  Precise sequential and parallel complexity bounds for quantifier elimination over algebraically closed fields , 1990 .

[22]  I. Kaplansky An introduction to differential algebra , 1957 .

[23]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[24]  A. Chistov,et al.  Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time , 1986 .