Phase transitions and hysteresis in nonlocal and order-parameter models

The paper describes two types of regularization to the basic quasistatic double-well potential problem in one space dimension. One model features a spatially nonlocal term while the other incorporates the use of an order parameter. Some basic existence and regularity results for these modified models are derived and some numerical calculations that show hysteresis and motion of phase boundaries are presented.SommarioIl lavoro descrive due tipi di regolarizzazione del problema quasistatico per un potenziale con due minimi in una dimensione. Un modello evidenzia caratteri di non località spaziale, mentre l'altro conduce ad una teoria con parametro d'ordine. Si derivano alcuni risultati di esistenza e regolarità e si presentano alcuni studi numerici che mostrano l'isteresi e il moto delle frontiere tra le fasi.

[1]  Morton E. Gurtin,et al.  Continuum theory of thermally induced phase transitions based on an order parameter , 1993 .

[2]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[3]  R. Rogers,et al.  On an order-parameter model for a binary liquid , 1995 .

[4]  Morton E. Gurtin,et al.  Dynamic solid-solid transitions with phase characterized by an order parameter , 1994 .

[5]  M. Gurtin,et al.  Structured phase transitions on a finite interval , 1984 .

[6]  G. Caginalp An analysis of a phase field model of a free boundary , 1986 .

[7]  Lev Truskinovsky,et al.  Kinks versus Shocks , 1993 .

[8]  R. Rogers,et al.  The coercivity paradox and nonlocal Ferromagnetism , 1992 .

[9]  Paul C. Fife,et al.  Dynamics of Layered Interfaces Arising from Phase Boundaries , 1988 .

[10]  R. Kress Linear Integral Equations , 1989 .

[11]  R. Rogers,et al.  A nonlocal model for the exchange energy in ferromagnetic materials , 1991 .

[12]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[13]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[14]  Eliot Fried,et al.  Continuum theory for coherent phase transitions incorporating an order parameter , 1993, Smart Structures.

[15]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[16]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[17]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.