The transferrin receptor: a potential molecular imaging marker for human cancer.

[1]  Gary D Luker,et al.  Molecular imaging of gene expression and protein function in vivo with PET and SPECT , 2002, Journal of magnetic resonance imaging : JMRI.

[2]  M. Tomas,et al.  F-18 FDG Versus Ga-67 for Detecting Splenic Involvement in Hodgkin’s Disease , 2002, Clinical nuclear medicine.

[3]  Vasilis Ntziachristos,et al.  High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. , 2002, Bioconjugate chemistry.

[4]  S. Gambhir,et al.  Optical imaging of Renilla luciferase reporter gene expression in living mice , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Weissleder,et al.  Human transferrin receptor gene as a marker gene for MR imaging. , 2001, Radiology.

[6]  S. Goldsmith,et al.  The value of Ga-67 scintigraphy and F-18 fluorodeoxyglucose positron emission tomography in staging and monitoring the response of lymphoma to treatment. , 2001, Seminars in nuclear medicine.

[7]  P. Peters,et al.  Subcellular localization of Rab17 by cryo-immunogold electron microscopy in epithelial cells grown on polycarbonate filters. , 2001, Methods in enzymology.

[8]  R Weissleder,et al.  Improvement of MRI probes to allow efficient detection of gene expression. , 2000, Bioconjugate chemistry.

[9]  Anna Moore,et al.  In vivo magnetic resonance imaging of transgene expression , 2000, Nature Medicine.

[10]  R Weissleder,et al.  Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. , 2000, Radiology.

[11]  S. Larson,et al.  Imaging transgene expression with radionuclide imaging technologies. , 2000, Neoplasia.

[12]  C. Contag,et al.  Use of reporter genes for optical measurements of neoplastic disease in vivo. , 2000, Neoplasia.

[13]  J. Hudson,et al.  In vivo gene expression profile analysis of human breast cancer progression. , 1999, Cancer research.

[14]  R Weissleder,et al.  High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. , 1999, Bioconjugate chemistry.

[15]  P. Gallé,et al.  Mechanism involved in gallium-67 (Ga-67) uptake by human lymphoid cell lines. , 1998, Cellular and molecular biology.

[16]  C. Unger,et al.  Synthesis and in vitro efficacy of transferrin conjugates of the anticancer drug chlorambucil. , 1998, Journal of medicinal chemistry.

[17]  R. Sakakibara,et al.  Efficiency of targeted gene delivery of ligand-poly-L-lysine hybrids with different crosslinks. , 1998, Bioscience, biotechnology, and biochemistry.

[18]  R Weissleder,et al.  Measuring transferrin receptor gene expression by NMR imaging. , 1998, Biochimica et biophysica acta.

[19]  R Weissleder,et al.  Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties , 1993, Magnetic resonance in medicine.

[20]  R. Klausner,et al.  Translation and the stability of mRNAs encoding the transferrin receptor and c-fos. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[21]  K. Mechtler,et al.  DNA-binding transferrin conjugates as functional gene-delivery agents: synthesis by linkage of polylysine or ethidium homodimer to the transferrin carbohydrate moiety. , 1991, Bioconjugate chemistry.

[22]  D. Neville,et al.  Uptake and concentration of bioactive macromolecules by K562 cells via the transferrin cycle utilizing an acid-labile transferrin conjugate. , 1991, The Journal of biological chemistry.

[23]  A. Ergen,et al.  Transferrin receptor activity as a marker in transitional cell carcinoma of the bladder. , 1991, British journal of urology.

[24]  E. Feener,et al.  Cleavage of disulfide bonds in endocytosed macromolecules. A processing not associated with lysosomes or endosomes. , 1990, The Journal of biological chemistry.

[25]  L. Recht,et al.  Transferrin receptor in normal and neoplastic brain tissue: implications for brain-tumor immunotherapy. , 1990, Journal of neurosurgery.

[26]  H. Motohashi [The relationship between Ga-67 uptake and transferrin receptors in cultured cells]. , 1990, Kanagawa shigaku. The Journal of the Kanagawa Odontological Society.

[27]  R. Klausner,et al.  Iron regulation of transferrin receptor mRNA levels requires iron‐responsive elements and a rapid turnover determinant in the 3′ untranslated region of the mRNA. , 1989, The EMBO journal.

[28]  M. Tsan,et al.  Mechanism of gallium-67 accumulation in inflammatory lesions. , 1985, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[29]  I. Mellman,et al.  Internalization and degradation of macrophage Fc receptors bound to polyvalent immune complexes , 1984, The Journal of cell biology.

[30]  I. Mellman,et al.  Internalization and rapid recycling of macrophage Fc receptors tagged with monovalent antireceptor antibody: possible role of a prelysosomal compartment , 1984, The Journal of cell biology.

[31]  M. Greaves,et al.  Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Omary,et al.  Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[33]  H. Sussman,et al.  Demonstration of the transferrin receptor in human breast cancer tissue. Potential marker for identifying dividing cells , 1981, International journal of cancer.

[34]  S. Larson,et al.  A transferrin-mediated uptake of gallium-67 by EMT-6 sarcoma. I. Studies in tissue culture. , 1979, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[35]  S. Larson,et al.  The incorporation of Ga-67 into the ferritin fraction of rabbit hepatocytes in vivo. , 1977, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[36]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.