The bimodal [Mg/Fe] versus [Fe/H] bulge sequence as revealed by APOGEE DR14

Context. The Galactic bulge has a bimodal metallicity distribution function: different kinematic, spatial, and, potentially, age distributions characterize the metal-poor and metal-rich components. Despite this observed dichotomy, which argues for different formation channels for those stars, the distribution of bulge stars in the α-abundance versus metallicity plane has been found so far to be a rather smooth single sequence. Aims. We use data from the fourteenth data release of the APOGEE spectroscopic survey (DR14) to investigate the distribution in the Mg abundance (as tracer of the α-elements)-versus-metallicity plane of a sample of stars selected to be in the inner region of the bulge. Methods. A clean sample has been selected from the DR14 using a set of data- and pipeline-flags to ensure the quality of their fundamental parameters and elemental abundances. An additional selection made use of computed spectro-photometric distances to select a sample of likely bulge stars as those with RGC ≤ 3.5 kpc. We adopt magnesium abundance as an α-abundance proxy for our clean sample as it has been proven to be the most accurate α-element as determined by ASPCAP, the pipeline for data products from APOGEE spectra. Results. From the distribution of our bulge sample in the [Mg/Fe]-versus-[Fe/H] plane, we found that the sequence is bimodal. This bimodality is given by the presence of a low-Mg sequence of stars parallel to the main high-Mg sequence over a range of ∼0.5 dex around solar metallicity. The two sequences merge above [Fe/H] ∼ 0.15 dex into a single sequence whose dispersion in [Mg/Fe] is larger than either of the two sequences visible at lower metallicity. This result is confirmed when we consider stars in our sample that are inside the bulge region according to trustworthy Gaia DR2 distances.

[1]  B. Andrews,et al.  APOGEE DR14/DR15 Abundances in the Inner Milky Way , 2018, The Astrophysical Journal.

[2]  C. Prieto,et al.  APOGEE Data Releases 13 and 14: Data and Analysis , 2018, The Astronomical Journal.

[3]  C. Prieto,et al.  APOGEE Data Releases 13 and 14: Stellar Parameter and Abundance Comparisons with Independent Analyses , 2018, The Astronomical Journal.

[4]  D. Minniti,et al.  The VVV Survey RR Lyrae Population in the Galactic Center Region , 2018, The Astrophysical Journal.

[5]  C. Chiappini,et al.  Chemodynamical History of the Galactic Bulge , 2018, Annual Review of Astronomy and Astrophysics.

[6]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[7]  L. Szabados,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[8]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[9]  V. Debattista,et al.  Chemically Dissected Rotation Curves of the Galactic Bulge from Main-sequence Proper Motions , 2018, 1804.01103.

[10]  C. Prieto,et al.  The Bulge Metallicity Distribution from the APOGEE Survey , 2017, 1712.01297.

[11]  D. A. García-Hernández,et al.  Target Selection for the SDSS-IV APOGEE-2 Survey , 2017, 1708.00155.

[12]  D. A. García-Hernández,et al.  University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .

[13]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Exploring the complex nature and origins of the Galactic bulge populations , 2017, 1704.03325.

[14]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[15]  H. Rix,et al.  $\mathit{Chempy}$: A flexible chemical evolution model for abundance fitting - Do the Sun's abundances alone constrain chemical evolution models? , 2017, 1702.08729.

[16]  C. Prieto,et al.  The Gaia-ESO Survey: Low-α element stars in the Galactic bulge , 2017, 1702.04500.

[17]  J. Brinkmann,et al.  Baade's window and APOGEE. Metallicities, ages, and chemical abundances , 2017, 1702.01547.

[18]  V. Debattista,et al.  Separation of Stellar Populations by an Evolving Bar: Implications for the Bulge of the Milky Way , 2016, 1611.09023.

[19]  D. Minniti,et al.  The GIRAFFE Inner Bulge Survey (GIBS) III. Metallicity distributions and kinematics of 26 Galactic bulge fields , 2016, 1610.09174.

[20]  S. Majewski,et al.  KINEMATICS IN THE GALACTIC BULGE WITH APOGEE. II. HIGH-ORDER KINEMATIC MOMENTS AND COMPARISON TO EXTRAGALACTIC BAR DIAGNOSTICS , 2016, 1609.07512.

[21]  Sergey E. Koposov,et al.  THE GAIA-ESO SURVEY: METAL-RICH BANANAS IN THE BULGE , 2016, 1605.09684.

[22]  A. Walker,et al.  BEFORE THE BAR: KINEMATIC DETECTION OF A SPHEROIDAL METAL-POOR BULGE COMPONENT , 2016, 1603.06578.

[23]  P. Matteo,et al.  The disc origin of the Milky Way bulge , 2018, Astronomy & Astrophysics.

[24]  Joss Bland-Hawthorn,et al.  The Galaxy in Context: Structural, Kinematic, and Integrated Properties , 2016, 1602.07702.

[25]  D. A. García-Hernández,et al.  Red giant masses and ages derived from carbon and nitrogen abundances , 2015, 1511.08203.

[26]  Nicholas Troup,et al.  ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.

[27]  D. Minniti,et al.  The Giraffe Inner Bulge Survey (GIBS) II. Metallicity distributions and alpha element abundances at fixed Galactic latitude , 2015, 1508.02576.

[28]  C. Bailer-Jones,et al.  Estimating Distances from Parallaxes , 2015, 1507.02105.

[29]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[30]  Scott W. Fleming,et al.  THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2015, 1501.03742.

[31]  M. Lehnert,et al.  Why the Milky Way's bulge is not only a bar formed from a cold thin disk , 2014, 1411.1416.

[32]  M. Schultheis,et al.  The Gaia-ESO Survey: metallicity and kinematic trends in the Milky Way bulge , 2014, 1408.4558.

[33]  O. Gerhard,et al.  Mapping the three-dimensional density of the galactic bulge with VVV red clump stars , 2013, 1308.0593.

[34]  R. Ibata,et al.  ARGOS – IV. The kinematics of the Milky Way bulge , 2013, 1303.6656.

[35]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[36]  G. Lewis,et al.  ARGOS - III. Stellar populations in the Galactic bulge of the Milky Way , 2012, 1212.1540.

[37]  F. Matteucci,et al.  Chemical evolution of the Galactic bulge: different stellar populations and possible gradients , 2012, 1209.4462.

[38]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[39]  Austria,et al.  Constraining the structure and formation of the Galactic bulge from a field in its outskirts. FLAMES-GIRAFFE spectra of about 400 red giants around (l,b)=(0{\deg},-10{\deg}) , 2012, 1206.3469.

[40]  M. Schultheis,et al.  Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS II. The complete high resolution extinction map and implications for Galactic bulge studies , 2012, 1204.4004.

[41]  D. Minniti,et al.  MAPPING THE X-SHAPED MILKY WAY BULGE , 2011, 1107.5360.

[42]  C. Babusiaux,et al.  The metallicity distribution of bulge clump giants in Baade’s window , 2011, 1107.5199.

[43]  S. Ortolani,et al.  Alpha element abundances and gradients in the Milky Way bulge from FLAMES-GIRAFFE spectra of 650 K giants , 2011, 1103.6104.

[44]  A. McWilliam,et al.  TWO RED CLUMPS AND THE X-SHAPED MILKY WAY BULGE , 2010, 1008.0519.

[45]  F. Matteucci,et al.  Quantifying the uncertainties of chemical evolution studies II. Stellar yields , 2010, 1006.5863.

[46]  C. Babusiaux,et al.  Insights on the Milky Way bulge formation from the correlations between kinematics and metallicity , 2010, 1005.3919.

[47]  M. Asplund,et al.  Chemical similarities between Galactic bulge and local thick disk red giants: O, Na, Mg, Al, Si, Ca, and Ti , 2010, 1001.2521.

[48]  S. Ortolani,et al.  Chemical abundances of 11 bulge stars from high-resolution, near-IR spectra , 2009, 0910.0448.

[49]  E. Tolstoy,et al.  Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group , 2009, 0904.4505.

[50]  S. Lucatello,et al.  Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - III. Detection of lithium in the metal-poor bulge dwarf MOA-2010-BLG-285S , 2010, 1009.5792.

[51]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[52]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[53]  R. Michael Rich,et al.  Abundances of Baade’s Window Giants from Keck HIRES Spectra. II. The Alpha and Light Odd Elements , 2006, astro-ph/0609087.

[54]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[55]  M. Asplund,et al.  New light on stellar abundance analyses: Departures from LTE and homogeneity. , 2005 .

[56]  M. G. Lattanzi,et al.  GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.

[57]  R. Rich,et al.  The First Detailed Abundance Analysis of Galactic Bulge K Giants in Baade's Window , 1994 .

[58]  J. P. Colque,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs , 2019 .