The bimodal [Mg/Fe] versus [Fe/H] bulge sequence as revealed by APOGEE DR14
暂无分享,去创建一个
M. Schultheis | G. Zasowski | D. Minniti | A. Recio-Blanco | R. Cohen | M. Zoccali | Á. Rojas-Arriagada | H. Jönsson | H. Jönsson
[1] B. Andrews,et al. APOGEE DR14/DR15 Abundances in the Inner Milky Way , 2018, The Astrophysical Journal.
[2] C. Prieto,et al. APOGEE Data Releases 13 and 14: Data and Analysis , 2018, The Astronomical Journal.
[3] C. Prieto,et al. APOGEE Data Releases 13 and 14: Stellar Parameter and Abundance Comparisons with Independent Analyses , 2018, The Astronomical Journal.
[4] D. Minniti,et al. The VVV Survey RR Lyrae Population in the Galactic Center Region , 2018, The Astrophysical Journal.
[5] C. Chiappini,et al. Chemodynamical History of the Galactic Bulge , 2018, Annual Review of Astronomy and Astrophysics.
[6] C. Bailer-Jones,et al. Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.
[7] L. Szabados,et al. Gaia Data Release 2 , 2018, Astronomy & Astrophysics.
[8] T. A. Lister,et al. Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.
[9] V. Debattista,et al. Chemically Dissected Rotation Curves of the Galactic Bulge from Main-sequence Proper Motions , 2018, 1804.01103.
[10] C. Prieto,et al. The Bulge Metallicity Distribution from the APOGEE Survey , 2017, 1712.01297.
[11] D. A. García-Hernández,et al. Target Selection for the SDSS-IV APOGEE-2 Survey , 2017, 1708.00155.
[12] D. A. García-Hernández,et al. University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .
[13] Sergey E. Koposov,et al. The Gaia-ESO Survey: Exploring the complex nature and origins of the Galactic bulge populations , 2017, 1704.03325.
[14] Aniruddha R. Thakar,et al. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.
[15] H. Rix,et al. $\mathit{Chempy}$: A flexible chemical evolution model for abundance fitting - Do the Sun's abundances alone constrain chemical evolution models? , 2017, 1702.08729.
[16] C. Prieto,et al. The Gaia-ESO Survey: Low-α element stars in the Galactic bulge , 2017, 1702.04500.
[17] J. Brinkmann,et al. Baade's window and APOGEE. Metallicities, ages, and chemical abundances , 2017, 1702.01547.
[18] V. Debattista,et al. Separation of Stellar Populations by an Evolving Bar: Implications for the Bulge of the Milky Way , 2016, 1611.09023.
[19] D. Minniti,et al. The GIRAFFE Inner Bulge Survey (GIBS) III. Metallicity distributions and kinematics of 26 Galactic bulge fields , 2016, 1610.09174.
[20] S. Majewski,et al. KINEMATICS IN THE GALACTIC BULGE WITH APOGEE. II. HIGH-ORDER KINEMATIC MOMENTS AND COMPARISON TO EXTRAGALACTIC BAR DIAGNOSTICS , 2016, 1609.07512.
[21] Sergey E. Koposov,et al. THE GAIA-ESO SURVEY: METAL-RICH BANANAS IN THE BULGE , 2016, 1605.09684.
[22] A. Walker,et al. BEFORE THE BAR: KINEMATIC DETECTION OF A SPHEROIDAL METAL-POOR BULGE COMPONENT , 2016, 1603.06578.
[23] P. Matteo,et al. The disc origin of the Milky Way bulge , 2018, Astronomy & Astrophysics.
[24] Joss Bland-Hawthorn,et al. The Galaxy in Context: Structural, Kinematic, and Integrated Properties , 2016, 1602.07702.
[25] D. A. García-Hernández,et al. Red giant masses and ages derived from carbon and nitrogen abundances , 2015, 1511.08203.
[26] Nicholas Troup,et al. ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.
[27] D. Minniti,et al. The Giraffe Inner Bulge Survey (GIBS) II. Metallicity distributions and alpha element abundances at fixed Galactic latitude , 2015, 1508.02576.
[28] C. Bailer-Jones,et al. Estimating Distances from Parallaxes , 2015, 1507.02105.
[29] Annie C. Robin,et al. ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.
[30] Scott W. Fleming,et al. THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2015, 1501.03742.
[31] M. Lehnert,et al. Why the Milky Way's bulge is not only a bar formed from a cold thin disk , 2014, 1411.1416.
[32] M. Schultheis,et al. The Gaia-ESO Survey: metallicity and kinematic trends in the Milky Way bulge , 2014, 1408.4558.
[33] O. Gerhard,et al. Mapping the three-dimensional density of the galactic bulge with VVV red clump stars , 2013, 1308.0593.
[34] R. Ibata,et al. ARGOS – IV. The kinematics of the Milky Way bulge , 2013, 1303.6656.
[35] Paul M. Brunet,et al. The Gaia mission , 2013, 1303.0303.
[36] G. Lewis,et al. ARGOS - III. Stellar populations in the Galactic bulge of the Milky Way , 2012, 1212.1540.
[37] F. Matteucci,et al. Chemical evolution of the Galactic bulge: different stellar populations and possible gradients , 2012, 1209.4462.
[38] L. Girardi,et al. parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.
[39] Austria,et al. Constraining the structure and formation of the Galactic bulge from a field in its outskirts. FLAMES-GIRAFFE spectra of about 400 red giants around (l,b)=(0{\deg},-10{\deg}) , 2012, 1206.3469.
[40] M. Schultheis,et al. Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS II. The complete high resolution extinction map and implications for Galactic bulge studies , 2012, 1204.4004.
[41] D. Minniti,et al. MAPPING THE X-SHAPED MILKY WAY BULGE , 2011, 1107.5360.
[42] C. Babusiaux,et al. The metallicity distribution of bulge clump giants in Baade’s window , 2011, 1107.5199.
[43] S. Ortolani,et al. Alpha element abundances and gradients in the Milky Way bulge from FLAMES-GIRAFFE spectra of 650 K giants , 2011, 1103.6104.
[44] A. McWilliam,et al. TWO RED CLUMPS AND THE X-SHAPED MILKY WAY BULGE , 2010, 1008.0519.
[45] F. Matteucci,et al. Quantifying the uncertainties of chemical evolution studies II. Stellar yields , 2010, 1006.5863.
[46] C. Babusiaux,et al. Insights on the Milky Way bulge formation from the correlations between kinematics and metallicity , 2010, 1005.3919.
[47] M. Asplund,et al. Chemical similarities between Galactic bulge and local thick disk red giants: O, Na, Mg, Al, Si, Ca, and Ti , 2010, 1001.2521.
[48] S. Ortolani,et al. Chemical abundances of 11 bulge stars from high-resolution, near-IR spectra , 2009, 0910.0448.
[49] E. Tolstoy,et al. Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group , 2009, 0904.4505.
[50] S. Lucatello,et al. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - III. Detection of lithium in the metal-poor bulge dwarf MOA-2010-BLG-285S , 2010, 1009.5792.
[51] Robert Barkhouser,et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.
[52] W. M. Wood-Vasey,et al. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.
[53] R. Michael Rich,et al. Abundances of Baade’s Window Giants from Keck HIRES Spectra. II. The Alpha and Light Odd Elements , 2006, astro-ph/0609087.
[54] Walter A. Siegmund,et al. # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .
[55] M. Asplund,et al. New light on stellar abundance analyses: Departures from LTE and homogeneity. , 2005 .
[56] M. G. Lattanzi,et al. GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.
[57] R. Rich,et al. The First Detailed Abundance Analysis of Galactic Bulge K Giants in Baade's Window , 1994 .
[58] J. P. Colque,et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs , 2019 .