Fast Hankel transform algorithm

The Hankel, or Fourier-Bessel, transform is an important computational tool for optics, acoustics, and geophysics. It may be computed by a combination of an Abel transform, Which maps an axisymmetric two-dimensional function into a line integral projection, and a one-dimensional Fourier transform. This paper presents a Hankel transform algorithm using a fast (linear time) Abel transform, followed by an FFT.

[1]  D. Ghosh THE APPLICATION OF LINEAR FILTER THEORY TO THE ' DIRECT INTERPRETATION OF GEOELECTRICAL RESISTIVITY SOUNDING MEASUREMENTS * , 1971 .

[2]  Neal C. Gallagher,et al.  Hexagonal sampling techniques applied to Fourier and Fresnel digital holograms , 1982 .

[3]  S. Candel,et al.  An algorithm for the Fourier-Bessel transform , 1981 .

[4]  A. Oppenheim,et al.  Computation of the Hankel transform using projections , 1980 .

[5]  S. Candel,et al.  Simultaneous calculation of Fourier-bessel transforms up to order N , 1981 .

[6]  Joseph W. Goodman,et al.  Optical reconstruction from projections via circular harmonic expansion , 1978 .

[7]  E. Hansen,et al.  State variable representation of a class of linear shift-variant systems , 1982 .

[8]  Peter D. Welch,et al.  The fast Fourier transform algorithm: Programming considerations in the calculation of sine, cosine and Laplace transforms☆ , 1970 .

[9]  A. Oppenheim,et al.  An algorithm for the numerical evaluation of the Hankel transform , 1978, Proceedings of the IEEE.

[10]  R. Bracewell Strip Integration in Radio Astronomy , 1956 .

[11]  H. Johansen,et al.  FAST HANKEL TRANSFORMS , 1979 .

[12]  E. Cavanagh,et al.  Numerical evaluation of Hankel transforms via Gaussian-Laguerre polynomial expansions , 1979 .

[13]  P. Chavel,et al.  Fourier transformation of rotationally invariant two-variable functions: Computer implementation of Hankel transform , 1977, Proceedings of the IEEE.

[14]  Eric W. Hansen New algorithms for Abel inversions and Hankel transforms , 1983, ICASSP.

[15]  Eric W. Hansen,et al.  Recursive methods for computing the Abel transform and its inverse , 1985 .

[16]  A. Siegman Quasi fast Hankel transform. , 1977, Optics letters.

[17]  K. Gopalan,et al.  Fast computation of zero order Hankel transform , 1983 .

[18]  Stephen J. Norton,et al.  Reconstruction of a two‐dimensional reflecting medium over a circular domain: Exact solution , 1980 .

[19]  S. Candel,et al.  Dual algorithms for fast calculation of the Fourier-Bessel transform , 1981 .

[20]  J. D. Talman,et al.  Numerical Fourier and Bessel transforms in logarithmic variables , 1978 .

[21]  D. Mook,et al.  An algorithm for the numerical evaluation of the Hankel and Abel transforms , 1983 .