Nonlinear equations for fractional laplacians II: existence, uniqueness, and qualitative properties of solutions

This paper, which is the follow-up to part I, concerns the equation (-Delta)(s)v + G'(v) = 0 in R-n, with s is an element of (0, 1), where (-Delta)(s) stands for the fractional Laplacian-the infinitesimal generator of a Levy process.; When n = 1, we prove that there exists a layer solution of the equation (i.e., an increasing solution with limits +/- 1 at +/-infinity) if and only if the potential G has only two absolute minima in [-1, 1], located at +/- 1 and satisfying G'(-1) = G'(1) = 0. Under the additional hypotheses G ''(-1) > 0 and G ''(1) > 0, we also establish its uniqueness and asymptotic behavior at infinity. Furthermore, we provide with a concrete, almost explicit, example of layer solution.; For n >= 1, we prove some results related to the one-dimensional symmetry of certain solutions-in the spirit of a well-known conjecture of De Giorgi for the standard Laplacian.

[1]  R. Bass,et al.  The Liouville Property and a Conjecture of De Giorgi , 2000 .

[2]  X. Cabré,et al.  Layer solutions in a half‐space for boundary reactions , 2005 .

[3]  J. Toland,et al.  The Peierls–Nabarro and Benjamin–Ono Equations , 1997 .

[4]  E. Cinti,et al.  Sharp energy estimates for nonlinear fractional diffusion equations , 2012, 1207.6194.

[5]  O. Savin Regularity of flat level sets in phase transitions , 2009 .

[6]  Enrico Valdinoci,et al.  Local and global minimizers for a variational energy involving a fractional norm , 2011, 1104.1725.

[7]  Rupert L. Frank,et al.  Uniqueness of non-linear ground states for fractional Laplacians in $${\mathbb{R}}$$R , 2013 .

[8]  Rupert L. Frank,et al.  Uniqueness of non-linear ground states for fractional Laplacians in $${\mathbb{R}}$$R , 2010, 1009.4042.

[9]  L. Ambrosio,et al.  On a Long-Standing Conjecture of E. De Giorgi: Symmetry in 3D for General Nonlinearities and a Local Minimality Property , 2001 .

[10]  R. Frank Uniqueness of non-linear ground states for fractional Laplacians in R , 2013 .

[11]  Luigi Ambrosio,et al.  Entire solutions of semilinear elliptic equations in R^3 and a conjecture of De Giorgi , 2000 .

[12]  E. Cinti,et al.  ENERGY ESTIMATES AND 1-D SYMMETRY FOR NONLINEAR EQUATIONS INVOLVING THE HALF-LAPLACIAN , 2010, 1004.2866.

[13]  E. Valdinoci,et al.  Rigidity Results for Some Boundary Quasilinear Phase Transitions , 2008, 0803.1382.

[14]  Régis Monneau,et al.  One-dimensional symmetry of bounded entire solutions of some elliptic equations , 2000 .

[15]  Nassif Ghoussoub,et al.  On a conjecture of De Giorgi and some related problems , 1998 .

[16]  Enrico Valdinoci,et al.  Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result , 2008, 0801.2355.

[17]  Vassili N. Kolokoltsov,et al.  Symmetric Stable Laws and Stable‐Like Jump‐Diffusions , 2000 .

[18]  Aleš Nekvinda,et al.  Characterization of traces of the weighted Sobolev space $W^{1,p}(\Omega,d_M^\epsilon)$ on $M$ , 1993 .

[19]  G. Burton Sobolev Spaces , 2013 .

[20]  Yannick Sire,et al.  Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates , 2010, 1012.0867.

[21]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.