A Primer on Stochastic Differential Geometry for Signal Processing

This primer explains how continuous-time stochastic processes (precisely, Brownian motion and other Itô diffusions) can be defined and studied on manifolds. No knowledge is assumed of either differential geometry or continuous-time processes. The arguably dry approach is avoided of first introducing differential geometry and only then introducing stochastic processes; both areas are motivated and developed jointly.

[1]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[2]  Cristóbal Lara Beautell Notes on integration , 1976 .

[3]  Y. Gliklikh Stochastic Analysis on Manifolds , 2011 .

[4]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[5]  Mark Braverman,et al.  The complexity of simulating Brownian Motion , 2009, SODA.

[6]  R. Gangolli,et al.  On the construction of certain diffusions on a differentiable manifold , 1964 .

[7]  Philip Protter,et al.  A COMPARISON OF STOCHASTIC INTEGRALS , 1979 .

[8]  Duke Benadom Forward , 1996, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[9]  H. Hendriks,et al.  Mean Location and Sample Mean Location on Manifolds , 1998 .

[10]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[11]  Victor Solo,et al.  On nonlinear state estimation in a Riemannian manifold , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[12]  Philip Protter,et al.  A short history of stochastic integration and mathematical finance the early years, 1880-1970 , 2004 .

[13]  Jonathan H. Manton,et al.  A globally convergent numerical algorithm for computing the centre of mass on compact Lie groups , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..

[14]  Nigel J. Newton Asymptotically efficient Runge-Kutta methods for a class of ITOˆ and Stratonovich equations , 1991 .

[15]  Laure Coutin,et al.  Good rough path sequences and applications to anticipating stochastic calculus , 2007, 0707.4546.

[16]  P. Protter Stochastic integration and differential equations , 1990 .

[17]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[18]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[19]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[20]  J. Munkres Analysis On Manifolds , 1991 .

[21]  J. Harrison,et al.  Brownian motion and stochastic flow systems , 1986 .

[22]  M H Stone Notes on Integration: I. , 1948, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Michael Koller An Introduction to Stochastic Integration , 2011 .

[24]  S. Basov Simulation and Inference for Stochastic Differential Equations: With R Examples , 2010 .

[25]  H. Sussmann On the Gap Between Deterministic and Stochastic Ordinary Differential Equations , 1978 .

[26]  Arthur J. Krener,et al.  The complexity of stochastic differential equations , 1981 .

[27]  L. C. Young,et al.  An inequality of the Hölder type, connected with Stieltjes integration , 1936 .

[28]  Alan Bain Stochastic Calculus , 2007 .

[29]  Francesco Russo,et al.  Forward, backward and symmetric stochastic integration , 1993 .

[30]  Terry Lyons,et al.  On the Importance of the Levy Area for Studying the Limits of Functions of Converging Stochastic Processes. Application to Homogenization , 2003 .

[31]  M. Émery Stochastic Calculus in Manifolds , 1989 .

[32]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[33]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[34]  J. T. Lewis Brownian Motion on a submanifold of Euclidean Space , 1986 .

[35]  Stefano M. Iacus,et al.  Simulation and Inference for Stochastic Differential Equations: With R Examples , 2008 .

[36]  R. Karandikar On pathwise stochastic integration , 1995 .

[37]  R. W. R. Darling,et al.  Approximating Ito integrals of differential forms and geodesic deviation , 1984 .

[38]  Terry Lyons Di erential equations driven by rough signals , 1998 .

[39]  H. McKean Brownian motions on the $3$-dimensional rotation group , 1960 .

[40]  B. Øksendal Stochastic Differential Equations , 1985 .

[41]  Y. Gliklikh Stochastic Differential Equations on Manifolds , 1996 .

[42]  HendriksHarrie,et al.  Mean Location and Sample Mean Location on Manifolds , 1998 .

[43]  Antoine Lejay,et al.  An Introduction to Rough Paths , 2003 .

[44]  E. Platen An introduction to numerical methods for stochastic differential equations , 1999, Acta Numerica.

[45]  W. Wonham Some applications of stochastic difierential equations to optimal nonlinear ltering , 1964 .

[46]  Jordan Stoyanov,et al.  Simulation and Inference for Stochastic Differential Equations: with R Examples , 2011 .

[47]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[48]  D. Crisan,et al.  Fundamentals of Stochastic Filtering , 2008 .

[49]  D. Applebaum Lévy Processes—From Probability to Finance and Quantum Groups , 2004 .

[50]  M. Liao Lévy Processes in Lie Groups , 2004 .

[51]  John Stillwell,et al.  Naive Lie Theory , 2008 .

[52]  G. Parisi Brownian motion , 2005, Nature.

[53]  A. M. Davie,et al.  Differential Equations Driven by Rough Paths: An Approach via Discrete Approximation , 2007, 0710.0772.

[54]  Peter K. Friz,et al.  Multidimensional Stochastic Processes as Rough Paths: Theory and Applications , 2010 .

[55]  Yuiti Yamato,et al.  Stochastic differential equations and Nilpotent Lie algebras , 1979 .

[56]  G. Chirikjian,et al.  Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .

[57]  P. Meyer,et al.  A differential geometric formalism for the ito calculus , 1981 .

[58]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[59]  David Applebaum,et al.  Lévy Processes and Stochastic Calculus by David Applebaum , 2009 .

[60]  Rajeeva L. Karandikar Pathwise solutions of Stochastic differential equations , 1981 .

[61]  M. van den Berg,et al.  Brownian Motion on a Hypersurface , 1985 .

[62]  Ruth J. Williams,et al.  Introduction to Stochastic Integration , 1994 .

[63]  R. L. Stratonovich A New Representation for Stochastic Integrals and Equations , 1966 .

[64]  W. F. Eberlein Notes on integration I: The underlying convergence theorem , 1957 .

[65]  Jonathan H. Manton,et al.  A framework for generalising the Newton method and other iterative methods from Euclidean space to manifolds , 2012, Numerische Mathematik.

[66]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[67]  E. T. Ordman Convergence Almost Everywhere is Not Topological , 1966 .

[68]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[69]  H. Vincent Poor,et al.  James-Stein state filtering algorithms , 1998, IEEE Trans. Signal Process..

[70]  Serge Cohen,et al.  Non-symmetric approximations for manifold-valued semimartingales , 2000 .

[71]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[72]  X. Pennec Probabilities and Statistics on Riemannian Manifolds : A Geometric approach , 2004 .

[73]  N. J. Rao,et al.  Numerical Solution of Ito Integral Equations , 1974 .

[74]  Jonathan H. Manton,et al.  Optimization algorithms exploiting unitary constraints , 2002, IEEE Trans. Signal Process..

[75]  Pietro Siorpaes,et al.  A SIMPLE PROOF OF THE BICHTELER-DELLACHERIE THEOREM , 2012, 1201.1996.

[76]  Dan Crisan,et al.  On a robust version of the integral representation formula of nonlinear filtering , 2005 .

[77]  Tyrone E. Duncan Stochastic integrals in Riemann manifolds , 1976 .

[78]  Philip Protter,et al.  Stochastic integration without tears , 1986 .

[79]  Jonathan H. Manton,et al.  A centroid (Karcher mean) approach to the joint approximate diagonalisation problem: The real symmetric case , 2006, Digit. Signal Process..

[80]  Jordan Stoyanov,et al.  Counterexamples in Probability , 1989 .

[81]  Peter K. Friz,et al.  Multidimensional Stochastic Processes as Rough Paths by Peter K. Friz , 2010 .

[82]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[83]  H. Hendriks A Crame´r-Rao–type lower bound for estimators with values in a manifold , 1991 .

[84]  M. Yor,et al.  Sur Quelques Approximations D’integrales Stochastiques , 1977 .

[85]  Kai Lai Chung,et al.  Green, Brown, and probability & Brownian motion on the line , 1982 .

[86]  Jonathan H. Manton,et al.  Extrinsic Mean of Brownian Distributions on Compact Lie Groups , 2012, IEEE Transactions on Information Theory.

[87]  Denise Handlarski,et al.  Green , 2007 .

[88]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[89]  W. Rüemelin Numerical Treatment of Stochastic Differential Equations , 1982 .

[90]  J. M. Clark,et al.  An Introduction to Stochastic Differential Equations on Manifolds , 1973 .