Automatic hp-Adaptivity With Arbitrary-Level Hanging Nodes

In this paper we present a new algorithm for fully automatic hp-adaptivity for elliptic problems based on arbitrary-level hanging nodes and local element projections. The algorithm is very simple to implement compared to best existing hp-adaptive strategies while its performance is comparable and sometimes superior. Numerical examples include the L-shape domain problem and a problem with internal layer (standard test cases with known exact solutions) as well as the challenging Girkmann problem of linear elasticity. With appropriate simplifications, the proposed technique can be applied to standard lower-order and spectral finite element methods. AMS subject classification: 35B50, 65N60

[1]  Tomáš Vejchodský,et al.  A weak discrete maximum principle for hp-FEM , 2007 .

[2]  Abani K. Patra,et al.  Performance of parallel preconditioners for adaptive hp FEM discretization of incompressible flows , 2002 .

[3]  Leszek Demkowicz,et al.  Goal-oriented hp-adaptivity for elliptic problems , 2004 .

[4]  Tomás Vejchodský,et al.  Modular hp-FEM system HERMES and its application to Maxwell's equations , 2007, Math. Comput. Simul..

[5]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[6]  Michael J. Holst,et al.  An Odyssey into Local Refinement and Multilevel Preconditioning III: Implementation and Numerical Experiments , 2003, SIAM J. Sci. Comput..

[7]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[8]  Guo,et al.  Approximation properties of the hp version of the finite element method , 2022 .

[9]  Abani K. Patra,et al.  Simple data management, scheduling and solution strategies for managing the irregularities in parallel adaptive hp finite element simulations , 2000, Parallel Comput..

[10]  Alberto Peano,et al.  Hierarchies of conforming finite elements for plane elasticity and plate bending , 1976 .

[11]  Jens Markus Melenk,et al.  hp-Finite Element Methods for Singular Perturbations , 2002 .

[12]  P. Solín Partial differential equations and the finite element method , 2005 .

[13]  Leszek Demkowicz,et al.  An hp‐adaptive finite element method for electromagnetics—part II: A 3D implementation , 2002 .

[14]  Tomás Vejchodský,et al.  Imposing orthogonality to hierarchic higher-order finite elements , 2007, Math. Comput. Simul..

[15]  Leszek Demkowicz,et al.  Integration of hp-adaptivity and a two-grid solver for elliptic problems , 2006 .

[16]  Abani K. Patra,et al.  Robust and efficient domain decomposition preconditioners for adaptive hp finite element approximations of linear elasticity with and without discontinuous coefficients , 2004 .

[17]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[18]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[19]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[20]  Enrico Bertolazzi DISCRETE CONSERVATION AND DISCRETE MAXIMUM PRINCIPLE FOR ELLIPTIC PDEs , 1998 .

[21]  Leszek Demkowicz,et al.  Parallel, fully automatic hp-adaptive 2d finite element package , 2006 .

[22]  Ivo Babuška,et al.  The Postprocessing Technique in the Finite Element Method - The Theory and Experience. , 1984 .

[23]  Sol ´ õn On a Weak Discrete Maximum Principle for hp-FEM , 2006 .