Estimating population dynamics without population data

We develop a biologically correct cost system for production systems facing invasive pests that allows the estimation of population dynamics without a priori knowledge of their true values. We apply that model to a data set for olive producers in Crete and derive from it predictions about the underlying population dynamics. Those dynamics are compared to information on population dynamics obtained from pest sampling with extremely favorable results.

[1]  D. Squires,et al.  Fishing effort: Its testing, specification, and internal structure in fisheries economics and management , 1987 .

[2]  Andrew Ang,et al.  Regime Switches in Interest Rates , 1998 .

[3]  Trevor Breusch,et al.  Maximum likelihood estimation of random effects models , 1987 .

[4]  R. Weaver,et al.  Damage Control Productivity: Why Econometrics Matters , 1997 .

[5]  E. Biørn,et al.  Random Coefficients in Unbalanced Panels: An Application on Data From Chemical Plants , 2003 .

[6]  E. Katz,et al.  Transfer seeking and avoidance: On the full social costs of rent seeking , 1986 .

[7]  A. Lansink,et al.  Damage control productivity : an input damage abatement approach , 2008 .

[8]  Benoit Bellone Classical Estimation of Multivariate Markov-Switching Models using MSVARlib , 2005 .

[9]  A. Ullah,et al.  Competitive Firm and the Theory of Input Demand under Price Uncertainty , 1974, Journal of Political Economy.

[10]  Myron P. Zalucki,et al.  Modelling the population dynamics of the Queensland fruit fly, Bactrocera (Dacus) tryoni: a cohort-based approach incorporating the effects of weather , 2004 .

[11]  C. Morrison Cost structure and the measurement of economic performance : productivity, utilization, cost economics, and related performance indicators , 1999 .

[12]  R. Chambers,et al.  Productivity accounting for separable technologies , 2014 .

[13]  Joseph P. Romano,et al.  Large Sample Confidence Regions Based on Subsamples under Minimal Assumptions , 1994 .

[14]  L. Joe Moffitt,et al.  Damage Control Econometrics: Functional Specification and Pesticide Productivity , 1992 .

[15]  F. Zalom,et al.  Olive Fruit Fly (Diptera: Tephritidae) Ovipositional Preference and Larval Performance in Several Commercially Important Olive Varieties in California , 2008, Journal of economic entomology.

[16]  Damage Control and Increasing Returns: Further Results , 1997 .

[17]  Simon Grant,et al.  A two-parameter model of dispersion aversion , 2014, J. Econ. Theory.

[18]  K. Thomson Agricultural Economics and Rural Development: Marriage or Divorce? Presidential Address , 2008 .

[19]  A. P. Economopoulos,et al.  Population studies on the olive fruit fly, Dacus oleae (Gmel.) (Dipt., Tephritidae) in Western Crete , 2009 .

[20]  Jeffrey M. Wooldridge,et al.  Solutions Manual and Supplementary Materials for Econometric Analysis of Cross Section and Panel Data , 2003 .

[21]  David Zilberman,et al.  The Econometrics of Damage Control: Why Specification Matters , 1986 .

[22]  Kelly M. Cobourn,et al.  Implications of simultaneity in a physical damage function , 2011 .

[23]  C. Bonatsos,et al.  Control of the olive fruit fly, Dacus oleae Gmel. (Dipt., Tephritidae) by mass trapping: Pilot scale feasibility study , 1986 .

[24]  Genc Hanife Modified Agar-based Diet for Small Scale Laboratory Rearing of Olive Fruit Fly, Bactrocera oleae (Diptera: Tephritidae) , 2009 .

[25]  Glenn Fox,et al.  Damage Control and Increasing Returns , 1995 .

[26]  A. Sandmo On the theory of the competitive firm under price uncertainty , 1971 .

[27]  Frederick W. Bell Technological Externalities and Common-Property Resources: An Empirical Study of the U.S. Northern Lobster Fishery , 1972, Journal of Political Economy.

[28]  E. Bulte,et al.  Compensation for Wildlife Damage: Habitat Conversion, Species Preservation and Local Welfare , 2003 .

[29]  M. Holt,et al.  Economic Behavior under Uncertainty: A Joint Analysis of Risk Preferences and Technology , 1996 .

[30]  Xingeng Wang,et al.  High Summer Temperatures Affect the Survival and Reproduction of Olive Fruit Fly (Diptera: Tephritidae) , 2009, Environmental entomology.

[31]  V. E. Ball The Stock of Capital in European Community Agriculture , 1993 .

[32]  Robert G. Chambers,et al.  Invariant risk attitudes , 2004, J. Econ. Theory.

[33]  Jerry A. Hausman,et al.  An Instrumental Variable Approach to Full-Information Estimators for Linear and Non-Linear Econometric Models , 1975 .

[34]  Larry G. Epstein Implicitly additive utility and the nature of optimal economic growth , 1986 .

[35]  D. Zilberman,et al.  Impact of Damage Control and Quality of Output: Estimating Pest Control Effectiveness , 1992 .

[36]  Erik Biørn,et al.  Regression systems for unbalanced panel data: a stepwise maximum likelihood procedure , 2004 .

[37]  A. Castrignanò,et al.  Spatio-temporal population dynamics and area-wide delineation of Bactrocera oleae monitoring zones using multi-variate geostatistics , 2012, Precision Agriculture.

[38]  H. Comins,et al.  Simulation of fruit fly population dynamics, with particular reference to the olive fruit fly, Dacus oleae , 1988 .

[39]  R. Pope The Generalized Envelope Theorem and Price Uncertainty , 1980 .

[40]  R. Beverton,et al.  On the dynamics of exploited fish populations , 1993, Reviews in Fish Biology and Fisheries.

[41]  Regime (non)stationarity in the US/UK real exchange rate , 2005 .

[42]  Jan Kmenta,et al.  A General Procedure for Obtaining Maximum Likelihood Estimates in Generalized Regression Models , 1974 .

[43]  Robin C. Sickles,et al.  A COMPARISON OF THE PERFORMANCE OF THREE FLEXIBLE FUNCTIONAL FORMS , 1983 .

[44]  Luigi Ponti,et al.  Effects of climate warming on Olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy , 2009 .

[45]  M. Blackwell,et al.  The Econometrics of Damage Control , 1992 .

[46]  Andrew Paul Gutierrez Applied Population Ecology: A Supply-Demand Approach , 1996 .