En face optical coherence tomography: a technology review [Invited].

A review on the technological development of en face optical coherence tomography (OCT) and optical coherence microscopy (OCM) is provided. The terminology originally referred to time domain OCT, where the preferential scanning was performed in the en face plane. Potentially the fastest realization of en face image recording is full-field OCT, where the full en face plane is illuminated and recorded simultaneously. The term has nowadays been adopted for high-speed Fourier domain approaches, where the en face image is reconstructed from full 3D volumes either by direct slicing or through axial projection in post processing. The success of modern en face OCT lies in its immediate and easy image interpretation, which is in particular of advantage for OCM or OCT angiography. Applications of en face OCT with a focus on ophthalmology are presented. The review concludes by outlining exciting technological prospects of en face OCT based both on time as well as on Fourier domain OCT.

[1]  Christian Ahlers,et al.  Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[2]  T. Yatagai,et al.  High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography. , 2007, Optics express.

[3]  James G Fujimoto,et al.  Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. , 2005, Optics express.

[4]  Wolfgang Wieser,et al.  Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation. , 2008, Optics letters.

[5]  Michael Pircher,et al.  Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT. , 2015, Biomedical optics express.

[6]  David D. Sampson,et al.  Quantifying the influence of Bessel beams on image quality in optical coherence tomography , 2016, Scientific Reports.

[7]  A. Bradu,et al.  Demonstration of tolerance to dispersion of master/slave interferometry. , 2015, Optics express.

[8]  J. Fujimoto,et al.  Optical coherence microscopy in scattering media. , 1994, Optics letters.

[9]  Peter Koch,et al.  Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT. , 2012, Optics express.

[10]  Justin Pedro,et al.  Multidimensional en-face OCT imaging of the retina. , 2009, Optics express.

[11]  Alexander W. Schill,et al.  Ultra-fast line-field low coherence holographic elastography using spatial phase shifting. , 2017, Biomedical optics express.

[12]  S. Popoff,et al.  Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. , 2009, Physical review letters.

[13]  Adrian Bradu,et al.  Master slave en-face OCT/SLO. , 2015, Biomedical optics express.

[14]  Y. Yasuno,et al.  Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. , 2008, Optics express.

[15]  David A. Jackson,et al.  Combined optical coherence tomograph and scanning laser ophthalmoscope , 1998 .

[16]  Nathan D. Shemonski,et al.  Computational high-resolution optical imaging of the living human retina , 2015, Nature Photonics.

[17]  M. Akiba,et al.  Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras. , 2003, Optics letters.

[18]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[19]  R. Leitgeb,et al.  Extended focus high-speed swept source OCT with self-reconstructive illumination. , 2011, Optics express.

[20]  Zhihua Ding,et al.  High-resolution optical coherence tomography over a large depth range with an axicon lens. , 2002, Optics letters.

[21]  Barry Cense,et al.  Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. , 2004, Investigative ophthalmology & visual science.

[22]  Peter Koch,et al.  Efficient holoscopy image reconstruction. , 2012, Optics express.

[23]  B E Bouma,et al.  Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging. , 2006, Optics express.

[24]  Christoph Kolbitsch,et al.  In vivo functional retinal optical coherence tomography. , 2010, Journal of biomedical optics.

[25]  C K Hitzenberger,et al.  Dynamic focus in optical coherence tomography for retinal imaging. , 2006, Journal of biomedical optics.

[26]  Adrian Bradu,et al.  Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography. , 2013, Optics express.

[27]  Michael Pircher,et al.  Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography. , 2004, Journal of biomedical optics.

[28]  Michael Pircher,et al.  Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo , 2017 .

[29]  Angelika Unterhuber,et al.  Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT. , 2015, Biomedical optics express.

[30]  Adrian Bradu,et al.  Calibration-free B-scan images produced by master/slave optical coherence tomography. , 2014, Optics letters.

[31]  Mathias Fink,et al.  Smart optical coherence tomography for ultra-deep imaging through highly scattering media , 2015, Science Advances.

[32]  Qienyuan Zhou,et al.  Three-dimensional imaging of the human retina by high-speed optical coherence tomography. , 2003, Optics express.

[33]  R. Webb,et al.  Confocal scanning laser ophthalmoscope. , 1987, Applied optics.

[34]  C. Hitzenberger,et al.  Polarization sensitive optical coherence tomography - a review [Invited]. , 2017, Biomedical optics express.

[35]  James G. Fujimoto,et al.  Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns , 2012, Biomedical optics express.

[36]  Thomas Klein,et al.  High-speed OCT light sources and systems [Invited]. , 2017, Biomedical optics express.

[37]  David A. Jackson,et al.  En-face coherence imaging using galvanometer scanner modulation. , 1998, Optics letters.

[38]  Barry Cense,et al.  Real-time multi-functional optical coherence tomography. , 2003, Optics express.

[39]  Panomsak Meemon,et al.  Gabor-based fusion technique for Optical Coherence Microscopy. , 2010, Optics express.

[40]  R. Leitgeb,et al.  Ultrahigh-speed non-invasive widefield angiography. , 2012, Journal of biomedical optics.

[41]  Adrian Gh. Podoleanu,et al.  Combinations of techniques in imaging the retina with high resolution , 2008, Progress in Retinal and Eye Research.

[42]  Steven M. Jones,et al.  High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. , 2006, Optics express.

[43]  M. V. van Gemert,et al.  Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography , 1997, European Conference on Biomedical Optics.

[44]  A. Boccara,et al.  Polarization-sensitive full-field optical coherence tomography. , 2007, Optics letters.

[45]  Xavier Levecq,et al.  Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye , 2018, Biomedical optics express.

[46]  Iwona Gorczynska,et al.  Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. , 2008, Investigative ophthalmology & visual science.

[47]  M. K. Kim,et al.  Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography. , 2000, Optics express.

[48]  A. Fercher,et al.  Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. , 2001, Optics express.

[49]  Fabrice Harms,et al.  Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis. , 2016, Biomedical optics express.

[50]  J. Fujimoto,et al.  Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging , 1992 .

[51]  Lingfeng Yu,et al.  Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method. , 2007, Optics express.

[52]  C K Hitzenberger,et al.  Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium , 2008, British Journal of Ophthalmology.

[53]  R. Li,et al.  Role of bone morphogenetic protein-7 in renal fibrosis , 2015, Front. Physiol..

[54]  L. Yannuzzi,et al.  Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy. , 2004, Journal of biomedical optics.

[55]  Ruikang K. Wang,et al.  Optical coherence tomography based angiography [Invited]. , 2017, Biomedical optics express.

[56]  Rainer A. Leitgeb,et al.  Multimodal Optical Medical Imaging Concepts Based on Optical Coherence Tomography , 2018, Front. Phys..

[57]  T. Yatagai,et al.  Optical coherence angiography. , 2006, Optics express.

[58]  Joachim Hornegger,et al.  TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY: Visualizing Blood Flow Speeds in Ocular Pathology Using Variable Interscan Time Analysis , 2016, Retina.

[59]  Richard B Rosen,et al.  Simultaneous optical coherence tomography--Indocyanine Green dye fluorescence imaging system for investigations of the eye's fundus. , 2005, Optics letters.

[60]  H Saint-Jalmes,et al.  Full-field optical coherence microscopy. , 1998, Optics letters.

[61]  J. Schwider,et al.  IV Advanced Evaluation Techniques in Interferometry , 1990 .

[62]  Julia S. Kroisamer,et al.  Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT , 2010, Biomedical optics express.

[63]  C. Dainty,et al.  Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. , 2006, Optics express.

[64]  Gesa Franke,et al.  Aberration-free volumetric high-speed imaging of in vivo retina , 2016, Scientific Reports.

[65]  Michael Pircher,et al.  Transversal phase resolved polarization sensitive optical coherence tomography , 2004, Physics in medicine and biology.

[66]  Justin Pedro,et al.  Combined confocal/en face T-scan-based ultrahigh-resolution optical coherence tomography in vivo retinal imaging. , 2006, Optics letters.

[67]  A. Bradu,et al.  Master/slave optical coherence tomography imaging of eyelid basal cell carcinoma. , 2016, Applied optics.

[68]  Angelika Unterhuber,et al.  Optical coherence tomography today: speed, contrast, and multimodality , 2014, Journal of biomedical optics.

[69]  Zhuolin Liu,et al.  Adaptive optics optical coherence tomography at 1 MHz. , 2014, Biomedical optics express.

[70]  A. Kampik,et al.  Multi-MHz retinal OCT. , 2013, Biomedical optics express.

[71]  Jannick P Rolland,et al.  Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range. , 2008, Optics letters.

[72]  Kate Grieve,et al.  In vivo high resolution human retinal imaging with wavefront correctionless full-field OCT , 2018 .

[73]  Omer P. Kocaoglu,et al.  A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future , 2016, Investigative ophthalmology & visual science.

[74]  R. Leitgeb,et al.  Extended focus depth for Fourier domain optical coherence microscopy. , 2006, Optics letters.

[75]  John S. Werner,et al.  Implementations of three OCT angiography (OCTA) methods with 1.7 MHz A-scan rate OCT system on imaging of human retinal and choroidal vasculature , 2018, Optics & Laser Technology.

[76]  Wolfgang Drexler,et al.  Optical Coherence Tomography in Ophthalmology , 2007 .

[77]  G. Hüttmann,et al.  Interferometric detection of 3D motion using computational subapertures in optical coherence tomography. , 2018, Optics express.

[78]  Kate Grieve,et al.  Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography. , 2004, Investigative ophthalmology & visual science.

[79]  P. Artal,et al.  Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator , 2005, Vision Research.

[80]  R. Leitgeb,et al.  Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning. , 2007, Optics letters.

[81]  Antoine Federici,et al.  Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination. , 2014, Applied optics.

[82]  Joseph M. Schmitt,et al.  An optical coherence microscope with enhanced resolving power , 1997 .

[83]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[84]  Kate Grieve,et al.  Large Field, High Resolution Full-Field Optical Coherence Tomography , 2014, Technology in cancer research & treatment.

[85]  Daniel L Marks,et al.  Inverse scattering for frequency-scanned full-field optical coherence tomography. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[86]  R. Leitgeb,et al.  Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]. , 2017, Biomedical optics express.

[87]  D. Jackson,et al.  Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry. , 1997, Optics letters.

[88]  A. Fercher,et al.  Wavelength-tuning interferometry of intraocular distances. , 1997, Applied optics.

[89]  D. Jackson,et al.  Coherence imaging by use of a Newton rings sampling function. , 1996, Optics letters.

[90]  Wolfgang Drexler,et al.  Line-field parallel swept source interferometric imaging at up to 1 MHz. , 2014, Optics letters.

[91]  J P Rolland,et al.  Invariant resolution dynamic focus OCM based on liquid crystal lens. , 2007, Optics express.

[92]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[93]  Michael Pircher,et al.  Three dimensional polarization sensitive OCT of human skin in vivo. , 2004, Optics express.

[94]  Steven M. Jones,et al.  Adaptive-optics optical coherence tomography for high-resolution and high-speed 3 D retinal in vivo imaging , 2005 .

[95]  Michael Pircher,et al.  Lens based adaptive optics scanning laser ophthalmoscope. , 2012, Optics express.

[96]  O. Carrasco-Zevallos,et al.  Review of intraoperative optical coherence tomography: technology and applications [Invited]. , 2017, Biomedical optics express.

[97]  A. Biswas,et al.  Interaction of spatially separated oscillating solitons in biased two-photon photorefractive materials , 2015 .

[98]  Martin Villiger,et al.  Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography. , 2015, Optics letters.

[99]  Rainer A. Leitgeb,et al.  Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans , 2010, Biomedical optics express.

[100]  Peter Koch,et al.  Holoscopy: holographic optical coherence tomography , 2011, European Conference on Biomedical Optics.

[101]  A. Boccara,et al.  Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography. I. Theory. , 2003, Applied optics.

[102]  Adrian Bradu,et al.  Imaging the eye fundus with real-time en-face spectral domain optical coherence tomography. , 2014, Biomedical optics express.

[103]  U. Schmidt-Erfurth,et al.  Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. , 2005, Investigative ophthalmology & visual science.

[104]  Richard B Rosen,et al.  IMAGING THE RETINA BY EN FACE OPTICAL COHERENCE TOMOGRAPHY , 2006, Retina.

[105]  Vincent Loriette,et al.  Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography. II. Instrument and results. , 2003, Applied optics.

[106]  Shuliang Jiao,et al.  Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography. , 2005, Optics express.

[107]  Wolfgang Drexler,et al.  Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics. , 2017, Biomedical optics express.

[108]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[109]  David A. Jackson,et al.  Topography and volume measurements of the optic nerve usingen-face optical coherence tomography. , 2001, Optics express.

[110]  M. Fink,et al.  In vivo high resolution human corneal imaging using full-field optical coherence tomography. , 2018, Biomedical optics express.

[111]  P Seitz,et al.  Optical coherence topography based on a two-dimensional smart detector array. , 2001, Optics letters.

[112]  C. Hitzenberger,et al.  Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction. , 2007, Optics express.

[113]  Leopold Schmetterer,et al.  Doppler Optical Coherence Tomography , 2014, Progress in Retinal and Eye Research.

[114]  Wolfgang Drexler,et al.  Subaperture correlation based digital adaptive optics for full field optical coherence tomography. , 2013, Optics express.

[115]  Dong-xu Yang,et al.  A Bias-Free Quantum Random Number Generation Using Photon Arrival Time Selectively , 2015, IEEE Photonics Journal.

[116]  A. Boccara,et al.  High-resolution full-field optical coherence tomography with a Linnik microscope. , 2002, Applied optics.

[117]  Shuichi Makita,et al.  Degree of polarization uniformity with high noise immunity using polarization-sensitive optical coherence tomography. , 2014, Optics letters.

[118]  Gesa Franke,et al.  Off-axis reference beam for full-field swept-source OCT and holoscopy. , 2017, Optics express.

[119]  Kate Grieve,et al.  Cell Motility as Contrast Agent in Retinal Explant Imaging With Full-Field Optical Coherence Tomography. , 2017, Investigative ophthalmology & visual science.

[120]  Peter Koch,et al.  In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s. , 2010, Optics letters.

[121]  Barry Cense,et al.  In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. , 2004, Journal of biomedical optics.

[122]  W. Drexler,et al.  Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length. , 2014, Optics express.

[123]  David J. Webb,et al.  Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry. , 1998, Journal of biomedical optics.

[124]  R. Huber,et al.  K-space linear Fourier domain mode locked laser and applications for optical coherence tomography. , 2008, Optics express.

[125]  Michael Pircher,et al.  Retinal cone mosaic imaged with transverse scanning optical coherence tomography. , 2006, Optics letters.

[126]  Harald Sattmann,et al.  In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level. , 2010, Optics express.

[127]  Adrian Bradu,et al.  Complex master slave interferometry. , 2016, Optics express.

[128]  J. Fujimoto,et al.  IMAGE ARTIFACTS IN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2015, Retina.

[129]  Harald Sattmann,et al.  Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. , 2004, Optics express.

[130]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[131]  Theo Lasser,et al.  Video-rate three-dimensional optical coherence tomography. , 2002, Optics express.

[132]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[133]  Liqun Sun,et al.  Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth , 2017, Journal of biomedical optics.

[134]  Joseph A. Izatt,et al.  Full-field swept-source phase microscopy , 2006 .

[135]  Xincheng Yao,et al.  Intrinsic optical signal imaging of retinal physiology: a review , 2015, Journal of biomedical optics.

[136]  Lara M. Wurster,et al.  Holographic line field en-face OCT with digital adaptive optics in the retina in vivo. , 2018, Biomedical optics express.

[137]  Grant Cull,et al.  Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma. , 2013, Investigative ophthalmology & visual science.

[138]  S H Yun,et al.  Motion artifacts in optical coherence tomography with frequency-domain ranging. , 2004, Optics express.

[139]  Robert J. Zawadzki,et al.  Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina in vivo , 2007 .

[140]  Theo Lasser,et al.  Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution. , 2006, Optics express.

[141]  Angelika Unterhuber,et al.  Full-field time-encoded frequency-domain optical coherence tomography. , 2006, Optics express.

[142]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[143]  C K Hitzenberger,et al.  Transversal ultrahigh-resolution polarizationsensitive optical coherence tomography for strain mapping in materials. , 2006, Optics express.

[144]  Michael Pircher,et al.  Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo. , 2014, Biomedical optics express.

[145]  R. Zawadzki,et al.  Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography. , 2008, Optics letters.

[146]  Donald T. Miller,et al.  Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. , 2005, Optics express.

[147]  R. Leitgeb,et al.  Numerically focused full-field swept-source optical coherence microscopy with structured illumination. , 2018, Optics express.

[148]  Robert J Zawadzki,et al.  Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited]. , 2017, Biomedical optics express.

[149]  A. Fercher,et al.  Dynamic coherent focus OCT with depth-independent transversal resolution , 1999 .

[150]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[151]  Claude Boccara,et al.  L'OCT plein champ , 2006, Photoniques.

[152]  David A. Jackson,et al.  Three dimensional OCT images from retina and skin. , 2000, Optics express.

[153]  C. Hitzenberger,et al.  Phase contrast coherence microscopy based on transverse scanning. , 2009, Optics letters.

[154]  Harald Sattmann,et al.  Phase-stable swept source OCT angiography in human skin using an akinetic source. , 2016, Biomedical optics express.