Cardiac stem cells and myocardial disease.

[1]  M. Saegusa,et al.  Human hepatic infarction: histopathological and postmortem angiological studies. , 2008, Liver.

[2]  C. Bearzi,et al.  The Young Mouse Heart Is Composed of Myocytes Heterogeneous in Age and Function , 2007, Circulation research.

[3]  E. Abel,et al.  Diabetic cardiomyopathy revisited. , 2007, Circulation.

[4]  David M. Harris,et al.  Adolescent Feline Heart Contains a Population of Small, Proliferative Ventricular Myocytes With Immature Physiological Properties , 2007, Circulation research.

[5]  I. Komuro,et al.  Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo , 2007, The Journal of cell biology.

[6]  M. Götz,et al.  The cell biology of neurogenesis , 2006, International Journal of Developmental Neuroscience.

[7]  C. Bearzi,et al.  The telomere-telomerase axis and the heart. , 2006, Antioxidants & redox signaling.

[8]  R. Gutiérrez,et al.  Adult stem and transit-amplifying cell location. , 2006, Histology and histopathology.

[9]  V. Roger,et al.  Trends in prevalence and outcome of heart failure with preserved ejection fraction. , 2006, The New England journal of medicine.

[10]  T. Lüscher,et al.  Diabetes Promotes Cardiac Stem Cell Aging and Heart Failure, Which Are Prevented by Deletion of the p66shc Gene , 2006, Circulation research.

[11]  P. Kaur Interfollicular epidermal stem cells: identification, challenges, potential. , 2006, The Journal of investigative dermatology.

[12]  C. Bearzi,et al.  Stem cell niches in the adult mouse heart. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Linheng Li,et al.  The stem cell niches in bone. , 2006, The Journal of clinical investigation.

[14]  Julian Lewis,et al.  Organizing cell renewal in the intestine: stem cells, signals and combinatorial control , 2006, Nature Reviews Genetics.

[15]  K. Moore,et al.  Stem Cells and Their Niches , 2006, Science.

[16]  N. Fukuda,et al.  Oxidative stress on progenitor and stem cells in cardiovascular diseases. , 2006, Current pharmaceutical biotechnology.

[17]  Roberto Bolli,et al.  Life and Death of Cardiac Stem Cells: A Paradigm Shift in Cardiac Biology , 2006, Circulation.

[18]  T. Kurosu,et al.  Reactive oxygen species generated by hematopoietic cytokines play roles in activation of receptor-mediated signaling and in cell cycle progression. , 2006, Cellular signalling.

[19]  Marc A Pfeffer,et al.  Controversies in ventricular remodelling , 2006, The Lancet.

[20]  G. Gurtner,et al.  Hyperglycemia-induced reactive oxygen species and impaired endothelial progenitor cell function. , 2005, Antioxidants & redox signaling.

[21]  P. Anversa,et al.  Cardiac stem cells and mechanisms of myocardial regeneration. , 2005, Physiological reviews.

[22]  D. Torella,et al.  Cardiac Stem Cells Possess Growth Factor-Receptor Systems That After Activation Regenerate the Infarcted Myocardium, Improving Ventricular Function and Long-Term Survival , 2005, Circulation research.

[23]  T. Shimazaki,et al.  Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart , 2005, The Journal of cell biology.

[24]  C. Bearzi,et al.  Human cardiac stem cells , 2005, Proceedings of the National Academy of Sciences.

[25]  S. Minucci,et al.  Electron Transfer between Cytochrome c and p66Shc Generates Reactive Oxygen Species that Trigger Mitochondrial Apoptosis , 2005, Cell.

[26]  F. Mouquet,et al.  CD31− but Not CD31+ Cardiac Side Population Cells Exhibit Functional Cardiomyogenic Differentiation , 2005, Circulation research.

[27]  T. Pedrazzini,et al.  FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. , 2005, The Journal of clinical investigation.

[28]  I. Weissman,et al.  Cell intrinsic alterations underlie hematopoietic stem cell aging. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  D. Torella,et al.  Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Daria Nurzynska,et al.  Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. Quesenberry,et al.  The stem cell continuum , 2005, Annals of the New York Academy of Sciences.

[32]  N. Heintz,et al.  Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. , 2005, Antioxidants & redox signaling.

[33]  S. Ballinger,et al.  Reactive species-mediated regulation of cell signaling and the cell cycle: the role of MAPK. , 2005, Antioxidants & redox signaling.

[34]  Bradford W Gibson,et al.  The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation. , 2005, The international journal of biochemistry & cell biology.

[35]  L. Haywood,et al.  Bone marrow embolism in sickle cell disease: A review , 2005, American journal of hematology.

[36]  L. J. Freeman,et al.  Acute Renal Infarction , 2005, Journal of the Royal Society of Medicine.

[37]  G. Aurigemma,et al.  Diastolic heart failure , 2004 .

[38]  Mark A Sussman,et al.  Cardiac Stem Cell and Myocyte Aging, Heart Failure, and Insulin-Like Growth Factor-1 Overexpression , 2004, Circulation research.

[39]  Mark A Sussman,et al.  Myocardial aging and senescence: where have the stem cells gone? , 2004, Annual review of physiology.

[40]  P. Pelicci,et al.  p66SHC Promotes Apoptosis and Antagonizes Mitogenic Signaling in T Cells , 2004, Molecular and Cellular Biology.

[41]  Hongjun Song,et al.  Neurogenesis in the adult brain: new strategies for central nervous system diseases. , 2004, Annual review of pharmacology and toxicology.

[42]  D. Scadden,et al.  Osteoblastic cells regulate the haematopoietic stem cell niche , 2003, Nature.

[43]  Michael D. Schneider,et al.  Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Torella,et al.  Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration , 2003, Cell.

[45]  Clotilde Castaldo,et al.  Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Toshimitsu Suzuki,et al.  Polyangitis overlap syndrome: A fatal case combined with adult Henoch‐Schönlein purpura and polyarteritis nodosa , 2003, Pathology international.

[47]  D. Torella,et al.  Senescence and Death of Primitive Cells and Myocytes Lead to Premature Cardiac Aging and Heart Failure , 2003, Circulation research.

[48]  P. Anversa,et al.  Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. , 2003, Circulation research.

[49]  N. Holbrook,et al.  Cellular response to oxidative stress: Signaling for suicide and survival * , 2002, Journal of cellular physiology.

[50]  B. Goldman,et al.  Evidence that human cardiac myocytes divide after myocardial infarction. , 2001, The New England journal of medicine.

[51]  B. Safai,et al.  Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. , 2001, Diabetes.

[52]  P. Anversa,et al.  IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. , 2001, Diabetes.

[53]  T. Shinohara,et al.  Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[54]  A. Maseri,et al.  Myocardial Cell Death in Human Diabetes , 2000, Circulation research.

[55]  George M. Martin,et al.  Lessons from human progeroid syndromes , 2000, Nature.

[56]  Gina A. Taylor,et al.  Involvement of Follicular Stem Cells in Forming Not Only the Follicle but Also the Epidermis , 2000, Cell.

[57]  B. Howard,et al.  Impact of diabetes on cardiac structure and function: the strong heart study. , 2000, Circulation.

[58]  N. Wright Epithelial stem cell repertoire in the gut: clues to the origin of cell lineages, proliferative units and cancer , 2000, International journal of experimental pathology.

[59]  F M Watt,et al.  Out of Eden: stem cells and their niches. , 2000, Science.

[60]  Pier Paolo Pandolfi,et al.  The p66shc adaptor protein controls oxidative stress response and life span in mammals , 1999, Nature.

[61]  C. di Loreto,et al.  Myocyte death in the failing human heart is gender dependent. , 1999, Circulation research.

[62]  R. Flickinger Hierarchical differentiation of multipotent progenitor cells. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[63]  F M Watt,et al.  Epidermal stem cells: markers, patterning and the control of stem cell fate. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[64]  G. Superti-Furga,et al.  Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor–MAP kinase–fos signalling pathway , 1997, The EMBO journal.

[65]  A. Soricelli,et al.  Premature aging in Werner's syndrome spares the central nervous system , 1996, Neurobiology of Aging.

[66]  B. Falini,et al.  Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation , 1996, Molecular and cellular biology.

[67]  E. Sonnenblick,et al.  Myocyte nuclear and possible cellular hyperplasia contribute to ventricular remodeling in the hypertrophic senescent heart in humans. , 1994, Journal of the American College of Cardiology.

[68]  Fiona M. Watt,et al.  Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression , 1993, Cell.

[69]  E. Lakatta,et al.  Cardiovascular regulatory mechanisms in advanced age. , 1993, Physiological reviews.

[70]  J. Wei,et al.  Age and the cardiovascular system. , 1992, The New England journal of medicine.

[71]  E. Sonnenblick,et al.  Cellular basis of ventricular remodeling in hypertensive cardiomyopathy. , 1992, American journal of hypertension.

[72]  E. Sonnenblick,et al.  Hypertensive cardiomyopathy. Myocyte nuclei hyperplasia in the mammalian rat heart. , 1990, The Journal of clinical investigation.

[73]  R. Bache Effects of hypertrophy on the coronary circulation. , 1988, Progress in cardiovascular diseases.

[74]  R. Kerber,et al.  The effect of cardiac hypertrophy on the coronary collateral circulation. , 1985, Circulation.

[75]  H. Claman,et al.  Gastrointestinal involvement in leukocytoclastic vasculitis and polyarteritis nodosa. , 1980, The Journal of rheumatology.

[76]  冨田 雄一 Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart , 2007 .

[77]  P. Anversa,et al.  Cardiac regeneration. , 2006, Journal of the American College of Cardiology.

[78]  E. Sonnenblick,et al.  Myocardial aging--a stem cell problem. , 2005, Basic research in cardiology.

[79]  G. Aurigemma,et al.  Clinical practice. Diastolic heart failure. , 2004, The New England journal of medicine.

[80]  Daniel J Garry,et al.  Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. , 2004, Developmental biology.

[81]  M. Jessup,et al.  Heart failure. , 2003, The New England journal of medicine.

[82]  E. Sonnenblick,et al.  The cellular basis of dilated cardiomyopathy in humans. , 1995, Journal of molecular and cellular cardiology.

[83]  C A Beltrami,et al.  Structural basis of end-stage failure in ischemic cardiomyopathy in humans. , 1994, Circulation.

[84]  P. Milner Bone marrow infarction in sickle cell anemia. , 1984, Blood.

[85]  G. Maude Bone marrow infarction in sickle cell anemia [letter] , 1984 .

[86]  Maude Gh Bone marrow infarction in sickle cell anemia. , 1984 .