A Stochastic Integer Programming Model for Incorporating Day-Ahead Trading of Electricity into Hydro-Thermal Unit Commitment

We develop a two-stage stochastic integer programming model for the simultaneous optimization of power production and day-ahead power trading in a hydro-thermal system. The model rests on mixed-integer linear formulations for the unit commitment problem and for the price clearing mechanism at the power exchange. Foreign bids enter as random components into the model. We solve the stochastic integer program by a decomposition method combining Lagrangian relaxation of nonanticipativity with branch-and-bound in the spirit of global optimization. Finally, we report some first computational experiences.

[1]  Maarten H. van der Vlerk,et al.  Stochastic integer programming:General models and algorithms , 1999, Ann. Oper. Res..

[2]  J. Birge,et al.  Equilibrium Values in a Competitive Power Exchange Market , 2001 .

[3]  Werner Römisch,et al.  Unit commitment in power generation – a basic model and some extensions , 2000, Ann. Oper. Res..

[4]  K. Kiwiel,et al.  Power management in a hydro-thermal system under uncertainty by Lagrangian relaxation , 2002 .

[5]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[6]  W. Römisch,et al.  A Two-Stage Planning Model for Power Scheduling in a Hydro-Thermal System Under Uncertainty , 2002 .

[7]  Rüdiger Schultz,et al.  Stochastic programming with integer variables , 2003, Math. Program..

[8]  R. Schultz,et al.  Stochastic Integer Programming , 2003 .

[9]  Huifu Xu,et al.  Necessary and Sufficient Conditions for Optimal Offers in Electricity Markets , 2002, SIAM J. Control. Optim..

[10]  Samer Takriti,et al.  Incorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment Problem , 2000, Oper. Res..

[11]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..

[12]  Benjamin F. Hobbs,et al.  Network Models of Spatial Oligopoly with an Application to Deregulation of Electricity Generation , 1986, Oper. Res..

[13]  A. Rudkevich,et al.  Modeling Electricity Pricing in a Deregulated Generation Industry : The Potential for Oligopoly Pricing in a Poolco , 2022 .

[14]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[15]  R. Green,et al.  Competition in the British Electricity Spot Market , 1992, Journal of Political Economy.

[16]  Friedel Bolle,et al.  Supply function equilibria and the danger of tacit collusion: The case of spot markets for electricity , 1992 .

[17]  John R. Birge,et al.  A stochastic model for the unit commitment problem , 1996 .

[18]  Edward J. Anderson,et al.  Optimal Offer Construction in Electricity Markets , 2002, Math. Oper. Res..

[19]  P. Klemperer,et al.  Supply Function Equilibria in Oligopoly under Uncertainty , 1989 .

[20]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[21]  Werner Römisch,et al.  Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty , 2000, Ann. Oper. Res..

[22]  Gerald B. Sheblé,et al.  Unit commitment literature synopsis , 1994 .