A Freshwater Classification Approach for Biodiversity Conservation Planning

: Freshwater biodiversity is highly endangered and faces increasing threats worldwide. To be complete, regional plans that identify critical areas for conservation must capture representative components of freshwater biodiversity as well as rare and endangered species. We present a spatially hierarchical approach to classify freshwater systems to create a coarse filter to capture representative freshwater biodiversity in regional conservation plans. The classification framework has four levels that we described using abiotic factors within a zoogeographic context and mapped in a geographic information system. Methods to classify and map units are flexible and can be automated where high-quality spatial data exist, or can be manually developed where such data are not available. Products include a spatially comprehensive inventory of mapped and classified units that can be used remotely to characterize regional patterns of aquatic ecosystems. We provide examples of classification procedures in data-rich and data-poor regions from the Columbia River Basin in the Pacific Northwest of North America and the upper Paraguay River in central South America. The approach, which has been applied in North, Central, and South America, provides a relatively rapid and pragmatic way to account for representative freshwater biodiversity at scales appropriate to regional assessments. Resumen: La biodiversidad de agua dulce esta en peligro y enfrenta amenazas crecientes en todo el mundo. Para ser completos, los planes regionales que identifican areas criticas para la conservacion deben incluir componentes representativos de la biodiversidad de agua dulce asi como especies raras y en peligro. Presentamos un metodo espacialmente jerarquico para clasificar sistemas de agua dulce para crear un filtro grueso que capte a la biodiversidad de agua dulce en los planes regionales de conservacion. La estructura de la clasificacion tiene cuatro niveles que describimos utilizando factores abioticos en un contexto zoogeografico y localizamos en un sistema de informacion geografico. Los metodos para clasificar y trazar mapas son flexibles y pueden ser automatizados, donde existen datos espaciales de alta calidad, o desarrollados manualmente cuando tales datos no estan disponibles. Los productos incluyen un inventario completo de unidades mapeadas y clasificadas que pueden ser usadas remotamente para caracterizar patrones regionales de ecosistemas acuaticos. Proporcionamos ejemplos de procedimientos de clasificacion en regiones ricas y pobres en datos en la cuenca del Rio Columbia en el noroeste de Norte America y del Rio Paraguay en Sudamerica central. El metodo, que ha sido aplicado en Norte, Centro y Sudamerica, proporciona una forma relativamente rapida y pragmatica de contabilizar biodiversidad de agua dulce representativa en escalas adecuadas para evaluaciones regionales.

[1]  Charles P. Hawkins,et al.  Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations , 2000, Journal of the North American Benthological Society.

[2]  James R. Aldrich,et al.  Rivers of Life: Critical Watersheds for Protecting Freshwater Diversity , 1998 .

[3]  P. Hudson,et al.  Review of habitat classification schemes appropriate to streams, rivers, and connecting channels in the Great Lakes drainage system , 1992 .

[4]  David B. Lewis,et al.  Landscape spatial patterns in freshwater snail assemblages across Northern Highland catchments , 2000 .

[5]  J. M. Landwehr,et al.  Hydro-climatic data network (HCDN); a U.S. Geological Survey streamflow data set for the United States for the study of climate variations, 1874-1988 , 1992 .

[6]  Kevin McGarigal,et al.  Hierarchical, Multi-scale decomposition of species-environment relationships , 2002, Landscape Ecology.

[7]  Alexander S. Flecker,et al.  Biodiversity conservation in running waters , 1993 .

[8]  N. Poff,et al.  Assessment of Biotic Patterns in Freshwater Ecosystems , 2001 .

[9]  J. Lyons Patterns in the species composition of fish assemblages among Wisconsin streams , 1996, Environmental Biology of Fishes.

[10]  J. Allan,et al.  Functional Organization of Stream Fish Assemblages in Relation to Hydrological Variability , 1995 .

[11]  J. R. Maxwell,et al.  A hierarchical framework of aquatic ecological units in North America , 1995 .

[12]  U. Fish,et al.  Summary of information on aquatic biota and their habitats in the Willamette Basin, Oregon, through 1995 , 1997 .

[13]  A. O. Nicholls,et al.  SELECTING MARINE RESERVES USING HABITATS AND SPECIES ASSEMBLAGES AS SURROGATES FOR BIOLOGICAL DIVERSITY , 1999 .

[14]  R. Pressey,et al.  LAND SYSTEMS AS SURROGATES FOR BIODIVERSITY IN CONSERVATION PLANNING , 2004 .

[15]  E. Wiley,et al.  The Zoogeography of North American Freshwater Fishes , 1987 .

[16]  J. Magnuson,et al.  ISOLATION VS. EXTINCTION IN THE ASSEMBLY OF FISHES IN SMALL NORTHERN LAKES , 1998 .

[17]  D. Montgomery,et al.  CHANNEL CLASSIFICATION, PREDICTION OF CHANNEL RESPONSE, AND ASSESSMENT OF CHANNEL CONDITION , 1993 .

[18]  B. Chernoff,et al.  A biological assessment of the aquatic ecosystems of the Pantanal, Mato Grosso do Sul, Brasil , 2000 .

[19]  P. B. King,et al.  Geologic map of Oregon , 1969 .

[20]  J. Magnuson,et al.  Patterns in the Species Composition and Richness of Fish Assemblages in Northern Wisconsin Lakes , 1982 .

[21]  John M. Melack,et al.  Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing , 1996 .

[22]  M. Winterbourn The river continuum concept — reply to Barmuta and Lake , 1982 .

[23]  P. Angermeier,et al.  characterizing fish community diversity across virginia landscapes: prerequisite for conservation , 1999 .

[24]  Ministerio das Minas e Energia,et al.  Projeto RADAM, Programa de Integracao Nacional. Levantamento de Recursos Naturais , 1973 .

[25]  D. Rosgen A classification of natural rivers , 1994 .

[26]  F. B. Lotspeich,et al.  Watersheds as the Basic Ecosystem: this Conceptual Framework Provides a Basis for a Natural Classification System , 1980 .

[27]  D. Plucknett International Agricultural Research for the Next Century The Consultative Group on International Agriculture increases emphasis on natural-resource management , 1993 .

[28]  T. C. Winter Classification of the hydrologic settings of lakes in the north central United States , 1977 .

[29]  Katherine E. Webster,et al.  A geomorphic template for the analysis of lake districts applied to the Northern Highland Lake District, Wisconsin, U.S.A. , 2000 .

[30]  Correspondence of stream benthic invertebrate assemblages to regional classification schemes in Missouri , 2000, Journal of the North American Benthological Society.

[31]  Anthony Ricciardi,et al.  Extinction Rates of North American Freshwater Fauna , 1999 .

[32]  P. Moyle,et al.  Protection of Aquatic Biodiversity in California: A Five-tiered Approach , 1994 .

[33]  R. O'Neill A Hierarchical Concept of Ecosystems. , 1986 .

[34]  J. Higgins,et al.  Planning for Biodiversity Conservation: Putting Conservation Science into Practice , 2002 .

[35]  Robin Abell,et al.  Freshwater ecoregions of North America : a conservation assessment , 1999 .

[36]  S. Hamilton,et al.  Potential effects of a major navigation project (Paraguay-Parana Hidrovia) on inundation in the Pantanal floodplains , 1999 .

[37]  R. Mittermeier,et al.  Conservation in the Pantanal of Brazil , 1990, Oryx.

[38]  W. Tonn Climate Change and Fish Communities: A Conceptual Framework , 1990 .

[39]  M. Wiley,et al.  Influence of Tributary Spatial Position on the Structure of Warmwater Fish Communities , 1992 .

[40]  D. Wentz,et al.  Environmental setting of the Willamette basin, Oregon , 1999 .

[41]  Thomas C. Winter,et al.  THE CONCEPT OF HYDROLOGIC LANDSCAPES 1 , 2001 .

[42]  C. Frissell,et al.  A hierarchical framework for stream habitat classification: Viewing streams in a watershed context , 1986 .

[43]  N. LeRoy Poff,et al.  Landscape Filters and Species Traits: Towards Mechanistic Understanding and Prediction in Stream Ecology , 1997, Journal of the North American Benthological Society.

[44]  Mark E. Jakubauskas,et al.  Beyond Species Richness: Community Similarity as a Measure of Cross‐Taxon Congruence for Coarse‐Filter Conservation , 2004 .

[45]  Florian Malard,et al.  Oxygen supply and the adaptations of animals in groundwater , 1999 .

[46]  W. J. Matthews,et al.  Patterns in Freshwater Fish Ecology , 1998, Springer US.

[47]  P. Bourgeron,et al.  EFFECTIVENESS OF BIOPHYSICAL CRITERIA IN THE HIERARCHICAL CLASSIFICATION OF DRMNAGE BASINS 1 , 2001 .

[48]  Thomas M. Quigley,et al.  An assessment of ecosystem components in the interior Columbia basin and portions of the Klamath and Great Basins: volume 1. , 1997 .

[49]  Thomas B. Starr,et al.  Hierarchy: Perspectives for Ecological Complexity , 1982 .

[50]  A. Bennett,et al.  HOW WELL DO ECOSYSTEM-BASED PLANNING UNITS REPRESENT DIFFERENT COMPONENTS OF BIODIVERSITY? , 2002 .

[51]  J. Omernik Ecoregions of the Conterminous United States , 1987 .

[52]  Carmen Revenga,et al.  Pilot analysis of global ecosystems : freshwater systems , 2000 .

[53]  Kernell G. Ries Estimation of low-flow duration discharges in Massachusetts , 1993 .