Multilevel multi-integration algorithm for acoustics

In acoustics the study of the prediction of noise and its possible consequences has tremendously gained in importance in the past decades. A low noise level has become an essential quality as well as a marketing advantage for products and installations. For guidance in the design of silent products there is an urgent need for computational tools to predict noise and localize its source.

[1]  H. Saunders,et al.  Acoustics: An Introduction to Its Physical Principles and Applications , 1984 .

[2]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[3]  Rene Visser A boundary element approach to acoustic radiation and source indentification , 2004 .

[4]  Daniel N. Rockmore,et al.  The FFT: an algorithm the whole family can use , 2000, Comput. Sci. Eng..

[5]  S. Kopuz,et al.  Boundary Element Method In TheDevelopment Of Vehicle Body StructuresFor Better Interior Acoustics , 1970 .

[6]  Leon M Keer,et al.  Fast Methods for Solving Rough Contact Problems: A Comparative Study , 2000 .

[7]  P. Bettess,et al.  Plane wave interpolation in direct collocation boundary element method for radiation and wave scattering: numerical aspects and applications , 2003 .

[8]  Y Yonekawa,et al.  A new approach to assess low frequency noise in the working environment. , 2001, Industrial health.

[9]  Stefan Schneider Application of Fast Methods for Acoustic Scattering and Radiation Problems , 2003 .

[10]  E. Brigham,et al.  The fast Fourier transform and its applications , 1988 .

[11]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[12]  J. Bos,et al.  Frictional heating of tribological contacts , 1995 .

[13]  Jian-Ming Jin,et al.  Computation of special functions , 1996 .

[14]  H. Eom Green’s Functions: Applications , 2004 .

[15]  A. Boag A fast multilevel domain decomposition algorithm for radar imaging , 2001 .

[16]  Antonius Lubrecht,et al.  Comparison of FFT-MLMI for Elastic Deformation Calculations , 2001 .

[17]  A. Brandt Multilevel computations of integral transforms and particle interactions with oscillatory kernels , 1991 .

[18]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[19]  Leon M Keer,et al.  Stress Analysis of Layered Elastic Solids With Cracks Using the Fast Fourier Transform and Conjugate Gradient Techniques , 2001 .

[20]  Amir Boag A fast iterative physical optics (FIPO) algorithm based on non‐uniform polar grid interpolation , 2002 .

[21]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.

[22]  Joel R. Phillips,et al.  Rapid solution of potential integral equations in complicated 3-dimensional geometries , 1997 .

[23]  J. Z. Zhu,et al.  The finite element method , 1977 .

[24]  J.,et al.  Sound and Sources of Sound , 2005 .

[25]  J. Oliver A doubly-adaptive Clenshaw-Curtis quadrature method , 1972, Comput. J..

[26]  S. M. Kirkup,et al.  Solution of Helmholtz Equation in the Exterior Domain by Elementary Boundary Integral Methods , 1995 .

[27]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[28]  Bilha Sandak,et al.  Multiscale fast summation of long‐range charge and dipolar interactions , 2001, J. Comput. Chem..

[29]  Noureddine Atalla,et al.  EFFICIENT EVALUATION OF THE ACOUSTIC RADIATION USING MULTIPOLE EXPANSION , 1999 .

[30]  Steffen Marburg,et al.  Performance of iterative solvers for acoustic problems. Part II. Acceleration by ILU-type preconditioner , 2003 .

[31]  W. Benthien,et al.  Nonexistence and Nonuniqueness Problems Associated with Integral Equation Methods in Acoustics , 1997 .

[32]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[33]  L Greengard,et al.  Fast Algorithms for Classical Physics , 1994, Science.

[34]  Eric F Darve The Fast Multipole Method , 2000 .

[35]  Olgierd Zaleski,et al.  Efficient acoustic calculations by the BEM and frequency interpolated transfer functions , 2003 .

[36]  D. Blackstock Fundamentals of Physical Acoustics , 2000 .

[37]  Cornelis H. Venner,et al.  Multilevel algorithms for the fast evaluation of integral transforms in acoustics , 2003 .

[38]  G. F. Miller,et al.  The application of integral equation methods to the numerical solution of some exterior boundary-value problems , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  Klaus Schulten,et al.  The fast multipole algorithm , 2000, Comput. Sci. Eng..

[40]  R. Raangs,et al.  A novel two-dimensional sound particle velocity probe for source localization and free field measurements in a diffuse field , 2001 .

[41]  Eric Darve,et al.  Méthodes multipôles rapides : résolution des équations de Maxwell par formulations intégrales , 1999 .

[42]  A. Brandt,et al.  WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .

[43]  Lothar Gaul,et al.  A multipole Galerkin boundary element method for acoustics , 2004 .

[44]  W. Cheney,et al.  Numerical analysis: mathematics of scientific computing (2nd ed) , 1991 .

[45]  Gary F. Dargush,et al.  A MULTILEVEL BOUNDARY-ELEMENT METHOD FOR TWO-DIMENSIONAL STEADY HEAT DIFFUSION , 2004 .

[46]  Achi Brandt,et al.  Multilevel Evaluation of Integral Transforms on Adaptive Grids , 1998 .

[47]  Andreas Schuhmacher Sound source reconstruction using inverse sound field calculations , 2000 .

[48]  Jean-Claude Nédélec Integral Representations and Integral Equations , 2001 .

[49]  C. Provatidis,et al.  On the ‘interior Helmholtz integral equation formulation’ in sound radiation problems , 2002 .

[50]  H. A. Schenck Improved Integral Formulation for Acoustic Radiation Problems , 1968 .

[51]  Noureddine Atalla,et al.  A novel acceleration method for the variational boundary element approach based on multipole expansion , 1998 .

[52]  Lawrence E. Kinsler,et al.  Fundamentals of acoustics , 1950 .

[53]  A. Edelman,et al.  Mesh generation for implicit geometries , 2005 .

[54]  Renée Visser Acoustic Source Localization based on Pressure and Particle Velocity Measurements , 2003 .

[55]  Achi Brandt,et al.  Multilevel Evaluation of Integral Transforms with Asymptotically Smooth Kernels , 1998, SIAM J. Sci. Comput..

[56]  Gary F. Dargush,et al.  A fast multi-level boundary element method for the Helmholtz equation , 2004 .

[57]  E. Michielssen,et al.  Nonuniform polar grid algorithm for fast field evaluation , 2002, IEEE Antennas and Wireless Propagation Letters.

[58]  Louis Baker,et al.  C mathematical function handbook , 1991 .

[59]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[60]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[61]  A. Brandt,et al.  Multilevel matrix multiplication and fast solution of integral equations , 1990 .

[62]  L. Keer,et al.  A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques , 1999 .

[63]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[64]  G. Evans Practical Numerical Analysis , 1996 .

[65]  A. Booth Numerical Methods , 1957, Nature.

[66]  A. Hirschberg,et al.  An introduction to acoustics , 1992 .

[67]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .