Generating functional approach to space- and time-dependent colored noise.

[1]  R. Kubo,et al.  Fluctuation and relaxation of macrovariables , 1973 .

[2]  Luciano Pietronero,et al.  The fractal structure of the universe , 1992 .

[3]  P. M. Hunt,et al.  Thermodynamic and stochastic theory for nonequilibrium systems with more than one reactive intermediate: Nonautocatalytic or equilibrating systems , 1990 .

[4]  M. Mackey,et al.  A Hopf-like equation and perturbation theory for differential delay equations , 1992 .

[5]  Vlad Hierarchical clustering-jump approach to analogs of renormalization-group transformations in fractal random processes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[6]  M. Vlad Stochastic renormalization group approach to random point processes. A fractal generalization of Poisson statistics , 1994 .

[7]  V. I. Tatarskii,et al.  Diffusive random process approximation in certain nonstationary statistical problems of physics , 1974 .

[8]  P. M. Hunt,et al.  Thermodynamics far from equilibrium: Reactions with multiple stationary states , 1988 .

[9]  Bruce J. West,et al.  ON THE UBIQUITY OF 1/f NOISE , 1989 .

[10]  L. Bergman,et al.  On the moments of time to first passage of the linear oscillator , 1981 .

[11]  Fractals in physics: applications and theoretical developments , 1992 .

[12]  S. Tuljapurkar,et al.  An uncertain life: demography in random environments. , 1989, Theoretical population biology.

[13]  On a class of probability distributions , 1949 .

[14]  S. Rice Mathematical analysis of random noise , 1944 .

[15]  Richard N. Zare,et al.  Direct inelastic scattering of N2 from Ag(111). II. Orientation , 1988 .

[16]  P. M. Hunt,et al.  Thermodynamic and stochastic theory for nonequilibrium systems with multiple reactive intermediates: The concept and role of excess work , 1992 .

[17]  Joseph W. Haus,et al.  Diffusion in regular and disordered lattices , 1987 .

[18]  Bruce J. West Fractal Forms in Physiology , 1990 .

[19]  J. Ross,et al.  Thermodynamic and stochastic theory of transport processes far from equilibrium , 1992 .

[20]  Stable Distribution and Levy Process in Fractal Turbulence , 1984 .

[21]  N. G. van Kampen,et al.  Stochastic differential equations , 1976 .

[22]  M. S. Bartlett,et al.  On the use of the characteristic functional in the analysis of some stochastic processes occurring in physics and biology , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  E. Montroll,et al.  On Lévy (or stable) distributions and the Williams-Watts model of dielectric relaxation , 1984 .

[24]  Bruce J. West Sensing scaled scintillations , 1990 .

[25]  J. Roberts,et al.  First-passage probabilities for randomly excited systems: Diffusion methods , 1986 .

[26]  J. M. Sancho,et al.  A colored-noise approach to Brownian motion in position space. Corrections to the Smoluchowski equation , 1980 .

[27]  Ryogo Kubo,et al.  STOCHASTIC LIOUVILLE EQUATIONS , 1963 .

[28]  L. Ramírez-Piscina,et al.  Generation of spatiotemporal colored noise. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[29]  A random walk approach to spiral motion , 1994 .

[30]  Abraham Nitzan,et al.  Fluctuations and transitions at chemical instabilities: The analogy to phase transitions , 1974 .

[31]  M. Vlad,et al.  A physical interpretation of age-dependent master equations , 1989 .