SAR Raw Data Generation Using Inverse SAR Image Formation Algorithms

SAR raw data generation using inverse chirp scaling and inverse omega-k algorithms is a computationally efficient technique as compared to the traditional temporal simulation. However, the simulation of raw data from a reflectivity map requires the inclusion of coherent information. This paper describes this critical step and presents some results for a static scene as well as a moving object.

[1]  Riccardo Lanari,et al.  Synthetic Aperture Radar Processing , 1999 .

[2]  Giorgio Franceschetti,et al.  The SAR simulation: an overview , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[3]  Hao Ling,et al.  Time-Frequency Transforms for Radar Imaging and Signal Analysis , 2002 .

[4]  Mehrdad Soumekh,et al.  Synthetic Aperture Radar Signal Processing with MATLAB Algorithms , 1999 .

[5]  N. Hamano,et al.  Digital processing of synthetic aperture radar data , 1984 .

[6]  W. Carrara,et al.  Spotlight synthetic aperture radar : signal processing algorithms , 1995 .

[7]  L. Ferro-Famil,et al.  SAR raw data simulation using high precision focusing methods , 2005, European Radar Conference, 2005. EURAD 2005..

[8]  Andrew S. Milman The Hyperbolic Geometry of SAR Imaging , 2000 .

[9]  R. Keith Raney,et al.  Precision SAR processing using chirp scaling , 1994, IEEE Trans. Geosci. Remote. Sens..

[10]  M. Soumekh Fourier Array Imaging , 1994 .

[11]  Richard Bamler,et al.  A comparison of range-Doppler and wavenumber domain SAR focusing algorithms , 1992, IEEE Trans. Geosci. Remote. Sens..

[12]  F. Rocca,et al.  SAR data focusing using seismic migration techniques , 1991 .