Probabilistic stereo egomotion transform

In this paper we propose a novel fully probabilistic solution to the stereo egomotion estimation problem. We extend the notion of probabilistic correspondence to the stereo case which allow us to compute the whole 6D motion information in a probabilistic way. We compare the developed approach against other known state-of-the-art methods for stereo egomotion estimation, and the obtained results compare favorably both for the linear and angular velocities estimation.

[1]  Alexandre Bernardino,et al.  Combining sparse and dense methods in 6D Visual Odometry , 2013, 2013 13th International Conference on Autonomous Robot Systems.

[2]  Stepán Obdrzálek,et al.  A voting strategy for visual ego-motion from stereo , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[3]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[4]  Roland Siegwart,et al.  Robust Real-Time Visual Odometry with a Single Camera and an IMU , 2011, BMVC.

[5]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[6]  Francisco Angel Moreno,et al.  An Efficient Closed-Form Solution to Probabilistic 6D Visual Odometry for a Stereo Camera , 2007, ACIVS.

[7]  Brett Browning,et al.  Evaluating Pose Estimation Methods for Stereo Visual Odometry on Robots , 2010 .

[8]  Sanjiv Singh,et al.  Global pose estimation with limited GPS and long range visual odometry , 2012, 2012 IEEE International Conference on Robotics and Automation.

[9]  Jing Fang,et al.  A high-efficiency digital image correlation method based on a fast recursive scheme , 2010 .

[10]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[11]  Frank Dellaert,et al.  Stereo Tracking and Three-Point/One-Point Algorithms - A Robust Approach in Visual Odometry , 2006, 2006 International Conference on Image Processing.

[12]  Sergiu Nedevschi,et al.  Fast vision based ego-motion estimation from stereo sequences — A GPU approach , 2011, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[13]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[14]  Andreas Geiger,et al.  Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[15]  James R. Bergen,et al.  Visual odometry for ground vehicle applications , 2006, J. Field Robotics.

[16]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[17]  Eduardo P. da Silva,et al.  6D Visual Odometry with Dense Probabilistic Egomotion Estimation , 2013, VISAPP.

[18]  Clark F. Olson,et al.  Rover navigation using stereo ego-motion , 2003, Robotics Auton. Syst..

[19]  Larry H. Matthies,et al.  Visual odometry on the Mars Exploration Rovers , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[20]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[21]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[22]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[23]  Patrick Rives,et al.  Real-time Quadrifocal Visual Odometry , 2010, Int. J. Robotics Res..

[24]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[25]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[26]  Frank Dellaert,et al.  Flow separation for fast and robust stereo odometry , 2009, 2009 IEEE International Conference on Robotics and Automation.

[27]  Roland Siegwart,et al.  Stereo-Based Ego-Motion Estimation Using Pixel Tracking and Iterative Closest Point , 2006, Fourth IEEE International Conference on Computer Vision Systems (ICVS'06).

[28]  Roland Siegwart,et al.  Real-time 6D stereo Visual Odometry with non-overlapping fields of view , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Andrew Howard,et al.  Real-time stereo visual odometry for autonomous ground vehicles , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Yiannis Aloimonos,et al.  A Probabilistic Notion of Correspondence and the Epipolar Constraint , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).