Mixed-Stacking Few-Layer Graphene as an Elemental Weak Ferroelectric Material

Ferroelectricity (ValasekJ.Phys. Rev.1921, 17, 475), a spontaneous formation of electric polarization, is a solid state phenomenon, usually, associated with ionic compounds or complex materials. Here we show that, atypically for elemental solids, few-layer graphenes can host an equilibrium out-of-plane electric polarization, switchable by sliding the constituent graphene sheets. The systems hosting such effect include mixed-stacking tetralayers and thicker (5–9 layers) rhombohedral graphitic films with a twin boundary in the middle of a flake. The predicted electric polarization would also appear in marginally (small-angle) twisted few-layer flakes, where lattice reconstruction would give rise to networks of mesoscale domains with alternating value and sign of out-of-plane polarization.

[1]  V. Fal’ko,et al.  Flat Bands for Electrons in Rhombohedral Graphene Multilayers with a Twin Boundary , 2022, Advanced Materials Interfaces.

[2]  T. Ihn,et al.  Scattering between Minivalleys in Twisted Double Bilayer Graphene. , 2022, Physical review letters.

[3]  S. Haigh,et al.  Interfacial ferroelectricity in marginally twisted 2D semiconductors , 2021, Nature Nanotechnology.

[4]  V. Fal’ko,et al.  Full Slonczewski-Weiss-McClure parametrization of few-layer twistronic graphene , 2021, Physical Review B.

[5]  A. Neto,et al.  Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene , 2021, Nature Physics.

[6]  Wenguang Zhu,et al.  Direct measurement of ferroelectric polarization in a tunable semimetal , 2020, Nature communications.

[7]  Kenji Watanabe,et al.  Stacking-engineered ferroelectricity in bilayer boron nitride , 2020, Science.

[8]  Kenji Watanabe,et al.  Out-of-Plane Dielectric Susceptibility of Graphene in Twistronic and Bernal Bilayers , 2019, Nano letters.

[9]  V. Fal’ko,et al.  Stacking Domains and Dislocation Networks in Marginally Twisted Bilayers of Transition Metal Dichalcogenides. , 2019, Physical review letters.

[10]  E. Tsymbal,et al.  A room-temperature ferroelectric semimetal , 2019, Science Advances.

[11]  Nick Woods,et al.  Computing the self-consistent field in Kohn–Sham density functional theory , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  F. Guinea,et al.  Dimensional reduction, quantum Hall effect and layer parity in graphite films , 2018, Nature Physics.

[13]  K. Novoselov,et al.  Stacking transition in rhombohedral graphite , 2018, Frontiers of Physics.

[14]  Zaiyao Fei,et al.  Ferroelectric switching of a two-dimensional metal , 2018, Nature.

[15]  S. Tawfick,et al.  Tailoring the mechanical properties of 2D materials and heterostructures , 2018, 2D Materials.

[16]  Steven B. Torrisi,et al.  Relaxation and domain formation in incommensurate two-dimensional heterostructures , 2018, Physical Review B.

[17]  P. Chand,et al.  Ferroelectrics: Principles and Applications , 2017 .

[18]  M. Koshino,et al.  Lattice relaxation and energy band modulation in twisted bilayer graphene , 2017, 1706.03908.

[19]  S. Larentis,et al.  Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene , 2017, Proceedings of the National Academy of Sciences.

[20]  W. Duan,et al.  Discovery of robust in-plane ferroelectricity in atomic-thick SnTe , 2016, Science.

[21]  S. Banerjee,et al.  van der Waals Heterostructures with High Accuracy Rotational Alignment. , 2016, Nano letters.

[22]  D. Srolovitz,et al.  van der Waals bilayer energetics: Generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers , 2015 .

[23]  R. P.,et al.  Band Structure of Graphite , 2011 .

[24]  P. Campbell,et al.  Techniques for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates , 2009, ACS nano.

[25]  Kenji Uchino,et al.  Ferroelectric Devices , 2018 .

[26]  I.P. Kaminow,et al.  Principles and applications of ferroelectrics and related materials , 1978, Proceedings of the IEEE.

[27]  M. P. Sharma Theory of Diamagnetism of Graphite. , 1973 .

[28]  E. J. Freise,et al.  Structure of Graphite , 1962, Nature.

[29]  J. W. McClure,et al.  Band Structure of Graphite and de Haas-van Alphen Effect , 1957 .

[30]  R. Roth,et al.  Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics , 1954 .

[31]  H. Megaw Origin of ferroelectricity in barium titanate and other perovskite-type crystals , 1952 .

[32]  E. G. STEWARD,et al.  Structure of Graphite , 1947, Nature.

[33]  J. D. Bernal,et al.  The Structure of Graphite , 1924 .

[34]  J. Valasek Piezo-Electric and Allied Phenomena in Rochelle Salt , 1921 .