Dimensions for recurrence times: topological and dynamical properties
暂无分享,去创建一个
[1] George M. Zaslavsky,et al. Fractal and multifractal properties of exit times and Poincarérecurrences , 1997 .
[2] Karl Petersen. Ergodic Theory , 1983 .
[3] Nataliya Chabarchina-Tchekhovaya. Nombres de recouvrement , 1997 .
[4] C. Caramanis. What is ergodic theory , 1963 .
[5] Sandro Vaienti,et al. Statistics of Return Times:¶A General Framework and New Applications , 1999 .
[6] P. Walters. Ergodic theory: Introductory lectures , 1975 .
[7] K. Falconer. The geometry of fractal sets , 1985 .
[8] Sandro Vaienti,et al. Fractal and statistical characteristics of recurrence times , 1998 .
[9] Y. Pesin,et al. Dimension theory in dynamical systems , 1997 .
[10] V. Afraimovich,et al. Sticky orbits of chaotic Hamiltonian dynamics , 1998 .
[11] Boris Hasselblatt,et al. Introduction to the Modern Theory of Dynamical Systems: PRINCIPAL CLASSES OF ASYMPTOTIC TOPOLOGICAL INVARIANTS , 1995 .
[12] V. Afraimovich,et al. Pesin's dimension for Poincare recurrences. , 1997, Chaos.
[13] L. Young. Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.
[14] Jonathan L. F. King,et al. Joining-rank and the structure of finite rank mixing transformations , 1988 .
[15] W. Parry. Symbolic dynamics and transformations of the unit interval , 1966 .
[16] S. V. Fomin,et al. Ergodic Theory , 1982 .
[17] S. Ferenczi. Systems of finite rank , 1997 .