Large regenerative parametric amplification on chip at ultra-low pump powers

Chip-based optical amplifiers can significantly expand the functionalities of photonic devices. In particular, optical-parametric amplifiers (OPAs), with engineerable gain-spectra, are well-suited for nonlinear-photonic applications. Chip-based OPAs typically require long waveguides that occupy a large footprint, and high pump powers that cannot be easily produced with chip-scale lasers. We theoretically and experimentally demonstrate a microresonator-assisted regenerative OPA that benefits from the large nonlinearity enhancement of microresonators and yields a high gain in a small footprint. We achieve 30-dB parametric gain with only 9 mW of cw-pump power and show that the gain spectrum can be engineered to cover telecom channels inaccessible with Er-based amplifiers. We further demonstrate the amplification of Kerr-soliton comb lines and the preservation of their phase properties. Additionally, we demonstrate amplification by injection locking of optical-parametric oscillators, which corresponds to a regenerative amplifier pumped above the oscillation threshold. Novel dispersion engineering techniques such as coupled cavities and higher-order-dispersion phase matching can further extend the tunability and spectral coverage of our amplification schemes. The combination of high gain, small footprint, low pump power, and flexible gain-spectra engineering of our regenerative OPA is ideal for amplifying signals from the nanowatt to microwatt regimes for portable or space-based devices where ultralow electrical power levels are required and can lead to important applications in on-chip optical- and microwave-frequency synthesis and precise timekeeping.

[1]  F. Zhou,et al.  High-performance Kerr microresonator optical parametric oscillator on a silicon chip , 2022, Nature Communications.

[2]  K. Lau,et al.  Recent Advances in Light Sources on Silicon , 2022, Advances in Optics and Photonics.

[3]  T. Kippenberg,et al.  A photonic integrated circuit–based erbium-doped amplifier , 2022, Science.

[4]  Bok Young Kim,et al.  Active tuning of dispersive waves in Kerr soliton combs. , 2022, Optics letters.

[5]  P. Rakich,et al.  Thermal noise-limited laser stabilization to an 8 mL volume Fabry-P\'erot reference cavity with microfabricated mirrors , 2022, 2203.15915.

[6]  Q. Guo,et al.  Intense Optical Parametric Amplification in Dispersion-Engineered Nanophotonic Lithium Niobate Waveguides , 2021, Optica.

[7]  P. Andrekson,et al.  Overcoming the quantum limit of optical amplification in monolithic waveguides , 2021, Science advances.

[8]  A. Gaeta,et al.  Theory of χ(2)-microresonator-based frequency conversion. , 2021, Optics letters.

[9]  T. Nagatsuma,et al.  Optically referenced 300 GHz millimetre-wave oscillator , 2021, Nature Photonics.

[10]  Alan Y. Liu,et al.  Quantum Dot Lasers and Amplifiers on Silicon: Recent Advances and Future Developments , 2021, IEEE Nanotechnology Magazine.

[11]  Renato R. Domeneguetti,et al.  Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths , 2021 .

[12]  J. Aumentado Superconducting Parametric Amplifiers: The State of the Art in Josephson Parametric Amplifiers , 2020, IEEE Microwave Magazine.

[13]  H. Tang,et al.  Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators , 2020, 2007.07411.

[14]  Richelle H. Streater,et al.  Optical Synthesis by Spectral Translation , 2020, 2020 Conference on Lasers and Electro-Optics (CLEO).

[15]  M. Lipson,et al.  Near-Degenerate Quadrature-Squeezed Vacuum Generation on a Silicon-Nitride Chip. , 2020, Physical review letters.

[16]  Michal Lipson,et al.  Turn-Key, High-Efficiency Kerr Comb Source , 2019, 2020 Conference on Lasers and Electro-Optics (CLEO).

[17]  Bok Young Kim,et al.  Visible nonlinear photonics via high-order-mode dispersion engineering , 2019, Optica.

[18]  T. Kippenberg,et al.  Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator , 2019, Nature Communications.

[19]  H. Tang,et al.  Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W , 2019, 1911.00083.

[20]  Chao Tang,et al.  Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings , 2019, Optica.

[21]  K. Srinivasan,et al.  Milliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics. , 2019, Optica.

[22]  Y. Geng,et al.  Microcavity-based narrowband parametric amplifier for carrier recovery in optical coherent self-homodyne detection. , 2019, Optics letters.

[23]  Miro Erkintalo,et al.  Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators , 2019, Nature Photonics.

[24]  T. C. Briles,et al.  Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics , 2019, Nature Photonics.

[25]  Michal Lipson,et al.  Photonic-chip-based frequency combs , 2019, Nature Photonics.

[26]  K. Rottwitt,et al.  Unidirectional frequency conversion in microring resonators for on-chip frequency-multiplexed single-photon sources , 2018, New Journal of Physics.

[27]  K. Srinivasan,et al.  Tuning Kerr-Soliton Frequency Combs to Atomic Resonances , 2018, Physical Review Applied.

[28]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[29]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[30]  R. Morandotti,et al.  Micro-combs: A novel generation of optical sources , 2017 .

[31]  Michal Lipson,et al.  Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold , 2017 .

[32]  D. T. H. Tan,et al.  Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge , 2017, Nature Communications.

[33]  Qing Li,et al.  Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics , 2015, Nature Photonics.

[34]  Xiaogan Liang,et al.  Optically induced transparency in a micro-cavity , 2015, Light: Science & Applications.

[35]  Ke-Yao Wang,et al.  GHz-rate optical parametric amplifier in hydrogenated amorphous silicon , 2015 .

[36]  Xiaoxiao Xue,et al.  Normal‐dispersion microcombs enabled by controllable mode interactions , 2015, 1503.06142.

[37]  J. E. Sipe,et al.  Spontaneous four-wave mixing in lossy microring resonators , 2015, 1502.05900.

[38]  Michal Lipson,et al.  Silicon-chip mid-infrared frequency comb generation , 2014, Nature Communications.

[39]  K. Vahala,et al.  Electro-optical frequency division and stable microwave synthesis , 2014, Science.

[40]  Sasan Fathpour,et al.  Heterogeneous lithium niobate photonics on silicon substrates. , 2013, Optics express.

[41]  K. Vahala,et al.  Microresonator frequency comb optical clock , 2013, 1309.3525.

[42]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[43]  C Bogan,et al.  Stabilized high-power laser system for the gravitational wave detector advanced LIGO. , 2012, Optics express.

[44]  R. Tatam,et al.  Optical gas sensing: a review , 2012 .

[45]  D J Moss,et al.  All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator. , 2011, Optics express.

[46]  Markus Pollnau,et al.  Erbium‐doped integrated waveguide amplifiers and lasers , 2011 .

[47]  J. Bowers,et al.  III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects , 2010 .

[48]  Roberto Morandotti,et al.  All optical wavelength conversion in an integrated ring resonator , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[49]  Yurii A. Vlasov,et al.  Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides , 2010, 1001.1533.

[50]  V. Ferrero,et al.  Narrow Linewidth CW Laser Phase Noise Characterization Methods for Coherent Transmission System Applications , 2008, Journal of Lightwave Technology.

[51]  Michal Lipson,et al.  Ultra-low power parametric frequency conversion in a silicon microring resonator. , 2008, Optics express.

[52]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[53]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.

[54]  F. Kartner,et al.  Cavity-enhanced optical parametric chirped-pulse amplification , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[55]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[56]  Richard P. Ratowsky,et al.  Developments in linear optical amplifier technology , 2003, SPIE ITCom.

[57]  Rainer Leonhardt,et al.  Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber. , 2003, Optics letters.

[58]  H. Haus Electromagnetic Noise and Quantum Optical Measurements , 2000 .

[59]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[60]  Charles G. Durfee,et al.  High power ultrafast lasers , 1998 .

[61]  D. Z. Anderson,et al.  Model for second-harmonic generation in glass optical fibers based on asymmetric photoelectron emission from defect sites. , 1991, Optics letters.

[62]  C. Gardiner,et al.  Squeezing of intracavity and traveling-wave light fields produced in parametric amplification , 1984 .

[63]  T. Kimura,et al.  Optical FM Signal Amplification by Injection Locked and Resonant Type Semiconductor Laser Amplifiers , 1982 .