Optimal experiment design for quantum state tomography: Fair, precise, and minimal tomography
暂无分享,去创建一个
I. Walmsley | J. Nunn | B. Smith | G. Puentes | J. Lundeen | B. Smith
[1] Journal of the Optical Society of America , 1950, Nature.
[2] P. Morse. Annals of Physics , 1957, Nature.
[3] T. Greville,et al. Some Applications of the Pseudoinverse of a Matrix , 1960 .
[4] Yonathan Bard,et al. Nonlinear parameter estimation , 1974 .
[5] John E. Harriman,et al. Geometry of density matrices. I. Definitions,Nmatrices and 1 matrices , 1978 .
[6] T. Brubaker,et al. Nonlinear Parameter Estimation , 1979 .
[7] B. A. D. H. Brandwood. A complex gradient operator and its applica-tion in adaptive array theory , 1983 .
[8] Physical Review Letters 63 , 1989 .
[9] Alfred O. Hero,et al. Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.
[10] Thomas L. Marzetta,et al. A simple derivation of the constrained multiple parameter Cramer-Rao bound , 1993, IEEE Trans. Signal Process..
[11] A. Hero,et al. Cramer-Rao lower bounds for biased image reconstruction , 1993, Proceedings of 36th Midwest Symposium on Circuits and Systems.
[12] A. Bos. Complex gradient and Hessian , 1994 .
[13] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[14] Alfred O. Hero,et al. Exploring estimator bias-variance tradeoffs using the uniform CR bound , 1996, IEEE Trans. Signal Process..
[15] Jeffrey A. Fessler. Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): applications to tomography , 1996, IEEE Trans. Image Process..
[16] L. Trefethen,et al. Numerical linear algebra , 1997 .
[17] Z. Hradil. Quantum-state estimation , 1996, quant-ph/9609012.
[18] B. C. Ng,et al. On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.
[19] G. D’Ariano,et al. Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.
[20] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[21] Gerald Recktenwald,et al. Numerical Methods with MATLAB : Implementations and Applications , 2000 .
[22] D. Kaszlikowski,et al. Minimal qubit tomography , 2004, quant-ph/0405084.
[23] Jaroslav Rehacek,et al. Maximum-likelihood methods in quantum mechanics , 2004 .
[24] Bhaskar D. Rao,et al. Cramer-Rao lower bound for constrained complex parameters , 2004, IEEE Signal Processing Letters.
[25] J. Fiurášek,et al. 3 Maximum-Likelihood Methods in Quantum Mechanics , 2004 .
[26] A. I. Lvovsky,et al. Iterative maximum-likelihood reconstruction in quantum homodyne tomography , 2003, quant-ph/0311097.
[27] T. Ralph,et al. Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.
[28] Ericka Stricklin-Parker,et al. Ann , 2005 .
[29] T. Monz,et al. Process tomography of ion trap quantum gates. , 2006, Physical review letters.
[30] C. Matson,et al. Biased Cramér-Rao lower bound calculations for inequality-constrained estimators. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.
[31] Z Hradil,et al. Biased tomography schemes: an objective approach. , 2006, Physical review letters.
[32] Kaare Brandt Petersen,et al. The Matrix Cookbook , 2006 .
[33] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[34] M.P.A. Branderhorst,et al. Quantum Proces Tomography of Decoherence in Diatomic Molecules , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.
[35] Gene H. Golub,et al. Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.
[36] Daniel A. Lidar,et al. Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.
[37] S. Weigert,et al. Mutually unbiased bases for continuous variables , 2008, 0802.0394.
[38] Alexei Gilchrist,et al. Choice of measurement sets in qubit tomography , 2007, 0706.3756.
[39] V. Koivunen,et al. On the Cramér-Rao bound for the constrained and unconstrained complex parameters , 2008, 2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop.
[40] Brian J. Smith,et al. Optimal quantum phase estimation. , 2008, Physical review letters.
[41] D. James,et al. Numerical strategies for quantum tomography: Alternatives to full optimization , 2009 .
[42] Brian J. Smith,et al. Bridging particle and wave sensitivity in a configurable detector of positive operator-valued measures. , 2009, Physical review letters.
[43] Jens Eisert,et al. Tomography of quantum detectors , 2009 .
[44] S. Brierley,et al. Constructing Mutually Unbiased Bases in Dimension Six , 2009, 0901.4051.
[45] Borivoje Dakic,et al. Mutually unbiased bases, orthogonal Latin squares, and hidden-variable models , 2008, 0804.2193.
[46] Robert Kosut,et al. Optimal quantum multiparameter estimation and application to dipole- and exchange-coupled qubits , 2008, 0812.4635.
[47] K. Banaszek,et al. Quantum phase estimation with lossy interferometers , 2009, 0904.0456.
[48] S. A. Babichev,et al. Instant single-photon Fock state tomography. , 2009, Optics letters.
[49] He-Shan Song,et al. Describing a quantum channel by state tomography of a single probe state , 2009, 0905.0512.
[50] K. Audenaert,et al. Quantum tomographic reconstruction with error bars: a Kalman filter approach , 2008, 0809.3359.
[51] A. Lvovsky,et al. Continuous-variable optical quantum-state tomography , 2009 .
[52] Daniel J. Velleman. American Mathematical Monthly , 2010 .
[53] Arthur Albert,et al. Regression and the Moore-Penrose Pseudoinverse , 2012 .