Optimal experiment design for quantum state tomography: Fair, precise, and minimal tomography

Given an experimental setup and a fixed number of measurements, how should one take data to optimally reconstruct the state of a quantum system? The problem of optimal experiment design (OED) for quantum state tomography was first broached by Kosut et al.[R. Kosut, I. Walmsley, and H. Rabitz, e-print arXiv:quant-ph/0411093 (2004)]. Here we provide efficient numerical algorithms for finding the optimal design, and analytic results for the case of 'minimal tomography'. We also introduce the average OED, which is independent of the state to be reconstructed, and the optimal design for tomography (ODT), which minimizes tomographic bias. Monte Carlo simulations confirm the utility of our results for qubits. Finally, we adapt our approach to deal with constrained techniques such as maximum-likelihood estimation. We find that these are less amenable to optimization than cruder reconstruction methods, such as linear inversion.

[1]  Journal of the Optical Society of America , 1950, Nature.

[2]  P. Morse Annals of Physics , 1957, Nature.

[3]  T. Greville,et al.  Some Applications of the Pseudoinverse of a Matrix , 1960 .

[4]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[5]  John E. Harriman,et al.  Geometry of density matrices. I. Definitions,Nmatrices and 1 matrices , 1978 .

[6]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[7]  B. A. D. H. Brandwood A complex gradient operator and its applica-tion in adaptive array theory , 1983 .

[8]  Physical Review Letters 63 , 1989 .

[9]  Alfred O. Hero,et al.  Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.

[10]  Thomas L. Marzetta,et al.  A simple derivation of the constrained multiple parameter Cramer-Rao bound , 1993, IEEE Trans. Signal Process..

[11]  A. Hero,et al.  Cramer-Rao lower bounds for biased image reconstruction , 1993, Proceedings of 36th Midwest Symposium on Circuits and Systems.

[12]  A. Bos Complex gradient and Hessian , 1994 .

[13]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[14]  Alfred O. Hero,et al.  Exploring estimator bias-variance tradeoffs using the uniform CR bound , 1996, IEEE Trans. Signal Process..

[15]  Jeffrey A. Fessler Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): applications to tomography , 1996, IEEE Trans. Image Process..

[16]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[17]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[18]  B. C. Ng,et al.  On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.

[19]  G. D’Ariano,et al.  Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.

[20]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[21]  Gerald Recktenwald,et al.  Numerical Methods with MATLAB : Implementations and Applications , 2000 .

[22]  D. Kaszlikowski,et al.  Minimal qubit tomography , 2004, quant-ph/0405084.

[23]  Jaroslav Rehacek,et al.  Maximum-likelihood methods in quantum mechanics , 2004 .

[24]  Bhaskar D. Rao,et al.  Cramer-Rao lower bound for constrained complex parameters , 2004, IEEE Signal Processing Letters.

[25]  J. Fiurášek,et al.  3 Maximum-Likelihood Methods in Quantum Mechanics , 2004 .

[26]  A. I. Lvovsky,et al.  Iterative maximum-likelihood reconstruction in quantum homodyne tomography , 2003, quant-ph/0311097.

[27]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[28]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[29]  T. Monz,et al.  Process tomography of ion trap quantum gates. , 2006, Physical review letters.

[30]  C. Matson,et al.  Biased Cramér-Rao lower bound calculations for inequality-constrained estimators. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  Z Hradil,et al.  Biased tomography schemes: an objective approach. , 2006, Physical review letters.

[32]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[33]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[34]  M.P.A. Branderhorst,et al.  Quantum Proces Tomography of Decoherence in Diatomic Molecules , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[35]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[36]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[37]  S. Weigert,et al.  Mutually unbiased bases for continuous variables , 2008, 0802.0394.

[38]  Alexei Gilchrist,et al.  Choice of measurement sets in qubit tomography , 2007, 0706.3756.

[39]  V. Koivunen,et al.  On the Cramér-Rao bound for the constrained and unconstrained complex parameters , 2008, 2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop.

[40]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[41]  D. James,et al.  Numerical strategies for quantum tomography: Alternatives to full optimization , 2009 .

[42]  Brian J. Smith,et al.  Bridging particle and wave sensitivity in a configurable detector of positive operator-valued measures. , 2009, Physical review letters.

[43]  Jens Eisert,et al.  Tomography of quantum detectors , 2009 .

[44]  S. Brierley,et al.  Constructing Mutually Unbiased Bases in Dimension Six , 2009, 0901.4051.

[45]  Borivoje Dakic,et al.  Mutually unbiased bases, orthogonal Latin squares, and hidden-variable models , 2008, 0804.2193.

[46]  Robert Kosut,et al.  Optimal quantum multiparameter estimation and application to dipole- and exchange-coupled qubits , 2008, 0812.4635.

[47]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[48]  S. A. Babichev,et al.  Instant single-photon Fock state tomography. , 2009, Optics letters.

[49]  He-Shan Song,et al.  Describing a quantum channel by state tomography of a single probe state , 2009, 0905.0512.

[50]  K. Audenaert,et al.  Quantum tomographic reconstruction with error bars: a Kalman filter approach , 2008, 0809.3359.

[51]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[52]  Daniel J. Velleman American Mathematical Monthly , 2010 .

[53]  Arthur Albert,et al.  Regression and the Moore-Penrose Pseudoinverse , 2012 .