Neural Network Renormalization Group

We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs hierarchical change-of-variables transformations from the physical space to a latent space with reduced mutual information. Conversely, the neural network directly maps independent Gaussian noises to physical configurations following the inverse RG flow. The model has an exact and tractable likelihood, which allows unbiased training and direct access to the renormalized energy function of the latent variables. To train the model, we employ probability density distillation for the bare energy function of the physical problem, in which the training loss provides a variational upper bound of the physical free energy. We demonstrate practical usage of the approach by identifying mutually independent collective variables of the Ising model and performing accelerated hybrid Monte Carlo sampling in the latent space. Lastly, we comment on the connection of the present approach to the wavelet formulation of RG and the modern pursuit of information preserving RG.

[1]  Arvind Satyanarayan,et al.  The Building Blocks of Interpretability , 2018 .

[2]  George Stephanopoulos,et al.  Multiresolution analysis in statistical mechanics. II. The wavelet transform as a basis for Monte Carlo simulations on lattices , 2003 .

[3]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[4]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[5]  G. Evenbly,et al.  Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law , 2009, 0903.5017.

[6]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[7]  Li Huang,et al.  Accelerated Monte Carlo simulations with restricted Boltzmann machines , 2016, 1610.02746.

[8]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[9]  G. Evenbly,et al.  Representation and design of wavelets using unitary circuits , 2016, 1605.07312.

[10]  Ben Poole,et al.  Categorical Reparameterization with Gumbel-Softmax , 2016, ICLR.

[11]  Yee Whye Teh,et al.  The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables , 2016, ICLR.

[12]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[13]  K. Wilson The renormalization group and critical phenomena , 1983 .

[14]  Deborah Silver,et al.  Feature Visualization , 1994, Scientific Visualization.

[15]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[16]  Xiao-Liang Qi,et al.  Exact holographic mapping and emergent space-time geometry , 2013, 1309.6282.

[17]  David J. Schwab,et al.  Comment on "Why does deep and cheap learning work so well?" [arXiv: 1608.08225] , 2016, ArXiv.

[18]  Surya Ganguli,et al.  Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net , 2017, NIPS.

[19]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[20]  M. Gell-Mann,et al.  QUANTUM ELECTRODYNAMICS AT SMALL DISTANCES , 1954 .

[21]  Nando de Freitas,et al.  Variational MCMC , 2001, UAI.

[22]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[23]  Michael Lässig,et al.  Geometry of the renormalization group with an application in two dimensions , 1990 .

[24]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[25]  Z. Y. Xie,et al.  Second renormalization of tensor-network states. , 2008, Physical review letters.

[26]  Jens Eisert,et al.  Real-space renormalization yields finite correlations. , 2010, Physical review letters.

[27]  Massimiliano Bonomi,et al.  Metadynamics , 2019, ioChem-BD Computational Chemistry Datasets.

[28]  B. Kaufman Crystal Statistics: II. Partition Function Evaluated by Spinor Analysis. III. Short-Range Order in a Binary Ising Lattice. , 1949 .

[29]  Ramesh A. Gopinath,et al.  Gaussianization , 2000, NIPS.

[30]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[31]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[32]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[33]  G. Evenbly,et al.  Tensor Network Renormalization. , 2014, Physical review letters.

[34]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[35]  Heiga Zen,et al.  Parallel WaveNet: Fast High-Fidelity Speech Synthesis , 2017, ICML.

[36]  G. Evenbly,et al.  Entanglement Renormalization and Wavelets. , 2016, Physical review letters.

[37]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[38]  K. Wilson Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior , 1971 .

[39]  Stefano Ermon,et al.  A-NICE-MC: Adversarial Training for MCMC , 2017, NIPS.

[40]  Fisher,et al.  Random transverse field Ising spin chains. , 1992, Physical review letters.

[41]  G. Evenbly,et al.  Tensor Network Renormalization Yields the Multiscale Entanglement Renormalization Ansatz. , 2015, Physical review letters.

[42]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  C. Bény Deep learning and the renormalization group , 2013, 1301.3124.

[44]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[45]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[46]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[47]  Michael E. Fisher,et al.  Scaling, universality and renormalization group theory , 1983 .

[48]  Michael Levin,et al.  Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.

[49]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[50]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[51]  Bela Bauer,et al.  Extracting Entanglement Geometry from Quantum States. , 2017, Physical review letters.

[52]  Richard Kenway,et al.  Vulnerability of Deep Learning , 2018, ArXiv.

[53]  George Stephanopoulos,et al.  Multiresolution analysis in statistical mechanics. I. Using wavelets to calculate thermodynamic properties , 2003 .

[54]  G. Jona-Lasinio The renormalization group: A probabilistic view , 1975 .

[55]  Z. Y. Xie,et al.  Renormalization of tensor-network states , 2010, 1002.1405.

[56]  S. M. Apenko Information theory and renormalization group flows , 2009, 0910.2097.

[57]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[58]  L. Goddard Information Theory , 1962, Nature.

[59]  Ariel Caticha,et al.  Changes of Variables and the Renormalization Group , 2016, 1605.06366.

[60]  Z. Y. Xie,et al.  Coarse-graining renormalization by higher-order singular value decomposition , 2012, 1201.1144.

[61]  Lei Wang,et al.  Discovering phase transitions with unsupervised learning , 2016, 1606.00318.

[62]  Matthew B Hastings,et al.  Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.

[63]  Serena Bradde,et al.  PCA Meets RG , 2016, Journal of Statistical Physics.

[64]  Vikash K. Mansinghka,et al.  Using probabilistic programs as proposals , 2018, ArXiv.

[65]  Iain Murray,et al.  Masked Autoregressive Flow for Density Estimation , 2017, NIPS.

[66]  Leo P. Kadanoff,et al.  Real Space Renormalization in Statistical Mechanics , 2013, 1301.6323.

[67]  Jascha Sohl-Dickstein,et al.  Generalizing Hamiltonian Monte Carlo with Neural Networks , 2017, ICLR.

[68]  Yichuan Zhang,et al.  Continuous Relaxations for Discrete Hamiltonian Monte Carlo , 2012, NIPS.

[69]  Chin-Kun Hu,et al.  Random Antiferromagnetic Chain , 1979 .

[70]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[71]  G. Vidal,et al.  Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.

[72]  Zhaocheng Liu,et al.  Simulating the Ising Model with a Deep Convolutional Generative Adversarial Network , 2017, 1710.04987.

[73]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[74]  G. Evenbly,et al.  Class of highly entangled many-body states that can be efficiently simulated. , 2012, Physical review letters.

[75]  Isaac H. Kim,et al.  Robust entanglement renormalization on a noisy quantum computer , 2017, 1711.07500.

[76]  Dustin Tran,et al.  TensorFlow Distributions , 2017, ArXiv.

[77]  F. Verstraete,et al.  Renormalization Group Flows of Hamiltonians Using Tensor Networks. , 2017, Physical review letters.

[78]  David A. Moore Symmetrized Variational Inference , 2016 .

[79]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[80]  Hugo Larochelle,et al.  MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.

[81]  Shuo Yang,et al.  Loop Optimization for Tensor Network Renormalization. , 2015, Physical review letters.

[82]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[83]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[84]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[85]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[86]  Satoshi Iso,et al.  Scale-invariant Feature Extraction of Neural Network and Renormalization Group Flow , 2018, Physical review. E.

[87]  Clement Delcamp,et al.  Renormalization of tensor networks using graph independent local truncations , 2017, 1709.07460.

[88]  B. Swingle,et al.  Entanglement Renormalization and Holography , 2009, 0905.1317.

[89]  Michele Parrinello,et al.  Coarse graining from variationally enhanced sampling applied to the Ginzburg–Landau model , 2017, Proceedings of the National Academy of Sciences.

[90]  Yang Qi,et al.  Self-learning Monte Carlo method , 2016, 1610.03137.

[91]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[92]  Zhao Yang,et al.  Machine Learning Spatial Geometry from Entanglement Features , 2017, 1709.01223.

[93]  Max Tegmark,et al.  Why Does Deep and Cheap Learning Work So Well? , 2016, Journal of Statistical Physics.

[94]  Xiao-Gang Wen,et al.  Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions , 2008 .

[95]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[96]  A. P. Dawid,et al.  Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals , 2003 .

[97]  David J. Schwab,et al.  An exact mapping between the Variational Renormalization Group and Deep Learning , 2014, ArXiv.

[98]  Zohar Ringel,et al.  Mutual information, neural networks and the renormalization group , 2017, ArXiv.

[99]  Lei Wang,et al.  Recommender engine for continuous-time quantum Monte Carlo methods. , 2016, Physical review. E.

[100]  Peter E. Latham,et al.  Mutual Information , 2006 .

[101]  R. Swendsen Monte Carlo Renormalization Group , 2011 .