m-Systems of Polar Spaces

Abstract Let P be a finite classical polar space of rank r , with r ⩾ 2. A partial m -system M of P , with 0 ≤ m ≦ r − 1, is any set { π 1 , π 2 , …, π k } of k (≠ 0) totally singular m -spaces of P such that no maximal totally singular space containing π i has a point in common with ( ν 1 ∪ π 2 ∪ ⋯ ∪ π k ) − π i , i = 1, 2, …, k . In each of the respective cases an upper bound δ for | M | is obtained. If | M | = δ, then M is called an m -system of P . For m = 0 the m -systems are the ovoids of P ; for m = r − 1 the m -systems are the spreads of P . Surprisingly δ is independent of m , giving the explanation why an ovoid and a spread of a polar space P have the same size. In the paper many properties of m -systems are proved. We show that with m -systems of three types of polar spaces there correspond strongly regular graphs and two-weight codes. Also, we describe several ways to construct an m ′-system from a given m -system. Finally, examples of m -systems are given.

[1]  J. Thas Ovoids and spreads of finite classical polar spaces , 1981 .

[2]  Joseph A. Thas,et al.  Semi-Partial Geometries and Spreads of Classical Polar Spaces , 1983, J. Comb. Theory A.

[3]  R. Calderbank,et al.  The Geometry of Two‐Weight Codes , 1986 .

[4]  J. Hirschfeld Finite projective spaces of three dimensions , 1986 .

[5]  W. Kantor Ovoids and Translation Planes , 1982, Canadian Journal of Mathematics.

[6]  Joseph A. Thas,et al.  Ovoidal translation planes , 1972 .

[7]  G. Panella Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito. , 1955 .

[8]  G. Eric Moorhouse Finite Geometry and Combinatorics: Root lattice constructions of ovoids , 1993 .

[9]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[10]  J. Thas A combinatorial problem , 1973 .

[11]  R. Dye Partitions and their stabilizers for line complexes and quadrics , 1977 .

[12]  J. H. Conway,et al.  New families of ovoids in O+8 , 1988 .

[13]  William M. Kantor,et al.  Spreads, Translation Planes and Kerdock Sets. I , 1982 .

[14]  J. Thas,et al.  General Galois geometries , 1992 .

[15]  Joseph A. Thas,et al.  Old and new results on spreads and ovoids of finite classical polar spaces , 1992 .

[16]  J. A. Thas,et al.  Interesting pointsets in generalized quadrangles and partial geometries , 1989 .

[17]  Joseph A. Thas,et al.  Polar Spaces, Generalized Hexagons and Perfect Codes , 1980, J. Comb. Theory, Ser. A.

[18]  J. Thas Projective Geometry over a Finite Field , 1995 .

[19]  Joseph A. Thas Two infinite classes of perfect codes in metrically regular graphs , 1977, J. Comb. Theory, Ser. B.

[20]  G. Eric Moorhouse,et al.  Ovoids from theE8 root lattice , 1993 .

[21]  Ernest Shult Nonexistence of ovoids in Omega+(10, 3) , 1989, J. Comb. Theory, Ser. A.