Bistability, higher harmonics, and chaos in AFM

A dynamic atomic force microscope sensitively probes surface properties with subnanometre lateral resolution. In the amplitude modulation mode, the force-sensing tip oscillates a few nanometres. The force sensor is a harmonic oscillator that interacts with a barrier, which can be described as a non-linear potential consisting of an attractive well and a repulsive wall. Further non-linearities may be introduced by adhesion, electrostatic or magnetic forces. Thus, the character of the non-linearity is intimately related to the material properties. This review highlights the non-linear dynamics in the amplitude modulation mode and how they enable and affect nanoscale material characterisation.

[1]  A. Atalar,et al.  Power dissipation analysis in tapping-mode atomic force microscopy , 2003 .

[2]  Abdullah Atalar,et al.  Simulation of higher harmonics generation in tapping-mode atomic force microscopy , 2001 .

[3]  D. Sarid,et al.  Kinetics of lossy grazing impact oscillators , 1998 .

[4]  R. Stark,et al.  Nanotomography with enhanced resolution using bimodal atomic force microscopy , 2008 .

[5]  M. Miles,et al.  High-Q dynamic force microscopy in liquid and its application to living cells. , 2001, Biophysical journal.

[6]  Krueger,et al.  Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects. , 1996, Physical review. B, Condensed matter.

[7]  Ricardo Garcia,et al.  Nanoscale compositional mapping with gentle forces. , 2007, Nature materials.

[8]  Arvind Raman,et al.  Chaos in atomic force microscopy. , 2006, Physical review letters.

[9]  J. Legleiter,et al.  The effect of set point ratio and surface Young’s modulus on maximum tapping forces in fluid tapping mode atomic force microscopy , 2010 .

[10]  Jason Cleveland,et al.  Energy dissipation in tapping-mode atomic force microscopy , 1998 .

[11]  M. Miles,et al.  Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. , 2001, Ultramicroscopy.

[12]  Nancy A. Burnham,et al.  Intermittent contact: tapping or hammering? , 1998 .

[13]  R. Boisgard,et al.  Dynamic operation modes of AFM: Non-linear behavior and theoretical analysis of the stability of the AFM oscillator , 2007 .

[14]  J. Molenaar,et al.  Dynamics of vibrating atomic force microscopy , 2000 .

[15]  M. Miles,et al.  Exploring the consequences of attractive and repulsive interaction regimes in tapping mode atomic force microscopy of DNA , 2004 .

[16]  Harry Dankowicz,et al.  Degenerate discontinuity-induced bifurcations in tapping-mode atomic-force microscopy , 2010 .

[17]  Robert W. Stark,et al.  Higher harmonics imaging in tapping-mode atomic-force microscopy , 2003 .

[18]  Hendrik Hölscher,et al.  Theory of amplitude modulation atomic force microscopy with and without Q-Control , 2007 .

[19]  García,et al.  Amplitude curves and operating regimes in dynamic atomic force microscopy , 2000, Ultramicroscopy.

[20]  Harry Dankowicz,et al.  On the stabilizability of near-grazing dynamics in impact oscillators , 2007 .

[21]  Murti V. Salapaka,et al.  Harmonic and power balance tools for tapping-mode atomic force microscope , 2001 .

[22]  D. Müller,et al.  From images to interactions: high-resolution phase imaging in tapping-mode atomic force microscopy. , 2001, Biophysical journal.

[23]  U. Dürig,et al.  Interaction sensing in dynamic force microscopy , 2000 .

[24]  M. Franchek,et al.  Frequency Domain Identification of Tip-sample van der Waals Interactions in Resonant Atomic Force Microcantilevers , 2004 .

[25]  Stephen W. Howell,et al.  Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment , 2002 .

[26]  Xin Xu,et al.  Compositional contrast of biological materials in liquids using the momentary excitation of higher eigenmodes in dynamic atomic force microscopy. , 2009, Physical review letters.

[27]  F. Richter,et al.  New possibilities of mechanical surface characterization with spherical indenters by comparison of experimental and theoretical results , 1999 .

[28]  H. Dankowicz,et al.  On the origin and bifurcations of stick-slip oscillations , 2000 .

[29]  Harry Dankowicz,et al.  Discontinuity-induced bifurcations in systems with impacts and friction: Discontinuities in the impact law , 2009 .

[30]  Georg Schitter,et al.  Tuning the interaction forces in tapping mode atomic force microscopy , 2003 .

[31]  Arvind Raman,et al.  VEDA: a web-based virtual environment for dynamic atomic force microscopy. , 2008, The Review of scientific instruments.

[32]  Olav Solgaard,et al.  An atomic force microscope tip designed to measure time-varying nanomechanical forces , 2007, Nature Nanotechnology.

[33]  R. Stark,et al.  Dual frequency atomic force microscopy on charged surfaces. , 2010, Ultramicroscopy.

[34]  E. Tholén,et al.  Phase imaging with intermodulation atomic force microscopy. , 2009, Ultramicroscopy.

[35]  Discontinuity-Induced Bifurcations in Systems With Hysteretic Force Interactions , 2008 .

[36]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[37]  Robert W. Stark,et al.  Intermittency in amplitude modulated dynamic atomic force microscopy. , 2010, Ultramicroscopy.

[38]  L. Nony,et al.  Stability criterions of an oscillating tip-cantilever system in dynamic force microscopy , 2001 .

[39]  Takashi Hikihara,et al.  Control of microcantilevers in dynamic force microscopy using time delayed feedback , 2006 .

[40]  Martin Stark,et al.  Inverting dynamic force microscopy: From signals to time-resolved interaction forces , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Stark Dynamics of repulsive dual-frequency atomic force microscopy , 2009 .

[42]  Robert W. Stark,et al.  Multimodal analysis of force spectroscopy based on a transfer function study of micro-cantilevers , 2007 .

[43]  J. Font,et al.  Bi-stability of amplitude modulation AFM in air: deterministic and stochastic outcomes for imaging biomolecular systems , 2010, Nanotechnology.

[44]  M. Stark,et al.  Stabilized atomic force microscopy imaging in liquids using second harmonic of cantilever motion for setpoint control , 2004 .

[45]  Robert W. Stark,et al.  Spectroscopy of the anharmonic cantilever oscillations in tapping-mode atomic-force microscopy , 2000 .

[46]  H. Salarieh,et al.  Control of chaos in atomic force microscopes using delayed feedback based on entropy minimization , 2009 .

[47]  Ute Rabe,et al.  Vibrations of free and surface‐coupled atomic force microscope cantilevers: Theory and experiment , 1996 .

[48]  Hysteresis models of dynamic mode atomic force microscopes: analysis and identification via harmonic balance , 2007, 0710.3922.

[49]  A. Boccara,et al.  Bistable behavior of a vibrating tip near a solid surface , 1991 .

[50]  rensen,et al.  Role of attractive forces in tapping tip force microscopy , 1997 .

[51]  J. Kirkham,et al.  Second harmonic atomic force microscopy of living Staphylococcus aureus bacteria , 2009 .

[52]  Time-varying tip-sample force measurements and steady-state dynamics in tapping-mode atomic force microscopy , 2007, 0712.2833.

[53]  Á. S. Paulo,et al.  High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. , 2000, Biophysical journal.

[54]  Robert W. Stark,et al.  Optical lever detection in higher eigenmode dynamic atomic force microscopy , 2004 .

[55]  A. Raman,et al.  Origins of phase contrast in the atomic force microscope in liquids , 2009, Proceedings of the National Academy of Sciences.

[56]  Abdullah Atalar,et al.  Enhancing higher harmonics of a tapping cantilever by excitation at a submultiple of its resonance frequency , 2005 .

[57]  Daniel Platz,et al.  Reconstructing nonlinearities with intermodulation spectroscopy. , 2009, Physical review letters.

[58]  Robert W. Stark,et al.  Spectroscopy of higher harmonics in dynamic atomic force microscopy , 2004 .

[59]  H. Dankowicz,et al.  Controlling bistability in tapping-mode atomic force microscopy using dual-frequency excitation , 2007 .

[60]  Robert W. Stark,et al.  Fourier transformed atomic force microscopy: tapping mode atomic force microscopy beyond the Hookian approximation , 2000 .

[61]  Murti V. Salapaka,et al.  Linearity of amplitude and phase in tapping-mode atomic force microscopy , 2000 .

[62]  G. Lévêque,et al.  Vibration of the cantilever in Force Modulation Microscopy analysis by a finite element model , 2003 .

[63]  Sebastian Rützel,et al.  Nonlinear dynamics of atomic–force–microscope probes driven in Lennard–Jones potentials , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[64]  Martin Stark,et al.  Higher-harmonics generation in tapping-mode atomic-force microscopy: Insights into the tip–sample interaction , 2000 .

[65]  W. Arnold,et al.  High-frequency response of atomic-force microscope cantilevers , 1997 .

[66]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[67]  L. Wang,et al.  Analytical descriptions of the tapping-mode atomic force microscopy response , 1998 .

[68]  Hendrik Hölscher,et al.  Theory of Q-Controlled dynamic force microscopy in air , 2006 .

[69]  Paul D. Ashby,et al.  Gentle imaging of soft materials in solution with amplitude modulation atomic force microscopy: Q control and thermal noise , 2007 .

[70]  S. Hosaka,et al.  Vacuum compatible high‐sensitive Kelvin probe force microscopy , 1996 .

[71]  Arvind Raman,et al.  Accurate force spectroscopy in tapping mode atomic force microscopy in liquids , 2010 .

[72]  Igor Mezic,et al.  Complex Dynamics in a Harmonically Excited Lennard-Jones Oscillator: Microcantilever-Sample Interaction in Scanning Probe Microscopes , 2000 .

[73]  L. Wang The role of damping in phase imaging in tapping mode atomic force microscopy , 1999 .

[74]  Myung-Hwan Whangbo,et al.  Phase imaging and stiffness in tapping-mode atomic force microscopy , 1997 .

[75]  Jilin Tang,et al.  Higher harmonic atomic force microscopy: imaging of biological membranes in liquid. , 2007, Physical review letters.

[76]  Ricardo Garcia,et al.  Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: Comparison between continuous and point-mass models , 2002 .

[77]  R. Stark,et al.  Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy. , 2001, Ultramicroscopy.

[78]  A. Raman,et al.  Multiple impact regimes in liquid environment dynamic atomic force microscopy , 2008 .

[79]  Takashi Hikihara,et al.  Controlling chaos in dynamic-mode atomic force microscope , 2009 .

[80]  L. Nony,et al.  Nonlinear dynamical properties of an oscillating tip–cantilever system in the tapping mode , 1999, physics/0510099.

[81]  H. Hölscher,et al.  Q-controlled amplitude modulation atomic force microscopy in liquids: An analysis , 2006 .

[82]  F. Giessibl,et al.  Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy , 1995, Science.

[83]  Ricardo Garcia,et al.  Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever , 2004 .

[84]  Murti V. Salapaka,et al.  Dynamical analysis and control of microcantilevers , 1999, Autom..

[85]  Alfredo Franco-Obregón,et al.  Detailed analysis of forces influencing lateral resolution for Q-control and tapping mode , 2001 .

[86]  Tomasz Kowalewski,et al.  Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[87]  R. Stark,et al.  Chaos in dynamic atomic force microscopy , 2006, Nanotechnology.

[88]  Ricardo Garcia,et al.  Dynamics of a vibrating tip near or in intermittent contact with a surface , 2000 .

[89]  Ricardo Garcia,et al.  Unifying theory of tapping-mode atomic-force microscopy , 2002 .

[90]  Georg Schitter,et al.  State-space model of freely vibrating and surface-coupled cantilever dynamics in atomic force microscopy , 2004 .

[91]  R. Proksch,et al.  Bimodal magnetic force microscopy: Separation of short and long range forces , 2009 .

[92]  R. Reifenberger,et al.  Nonlinear dynamic perspectives on dynamic force microscopy. , 2003, Ultramicroscopy.

[93]  Andreas Stemmer,et al.  Multifrequency electrostatic force microscopy in the repulsive regime , 2007 .

[94]  Noise analysis of geometrically complex mechanical structures using the analogy between electrical circuits and mechanical systems , 1999 .