Grid Services Base Library: A high-level, procedural application programming interface for writing Globus-based Grid services

The Grid Services Base Library (GSBL) is a procedural application programming interface (API) that abstracts many of the high-level functions performed by Globus Grid services, thus dramatically lowering the barriers to writing Grid services. The library has been extensively tested and used for computational biology research in a Globus Toolkit-based Grid system, in which no fewer than twenty Grid services written with this API are deployed.

[1]  David P. Anderson,et al.  SETI@home: an experiment in public-resource computing , 2002, CACM.

[2]  Daniel S. Myers,et al.  Necessity is the mother of invention: a simple grid computing system using commodity tools , 2003, J. Parallel Distributed Comput..

[3]  M. Chial,et al.  in simple , 2003 .

[4]  Peter Beerli,et al.  Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Ian Foster,et al.  The Grid 2 - Blueprint for a New Computing Infrastructure, Second Edition , 1998, The Grid 2, 2nd Edition.

[6]  Michael Assfalg,et al.  Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain. , 2005, Molecular cell.

[7]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[8]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[9]  R. Hudson,et al.  A new statistic for detecting genetic differentiation. , 2000, Genetics.

[10]  Antonis Rokas,et al.  Comparing bootstrap and posterior probability values in the four-taxon case. , 2003, Systematic biology.

[11]  S. Andelman,et al.  Mathematical Methods for Identifying Representative Reserve Networks , 2000 .

[12]  Ami Marowka,et al.  The GRID: Blueprint for a New Computing Infrastructure , 2000, Parallel Distributed Comput. Pract..

[13]  Andrew Rambaut,et al.  Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees , 1997, Comput. Appl. Biosci..

[14]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[15]  R. Nielsen,et al.  Multilocus Methods for Estimating Population Sizes, Migration Rates and Divergence Time, With Applications to the Divergence of Drosophila pseudoobscura and D. persimilis , 2004, Genetics.

[16]  J. Felsenstein,et al.  Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. , 1999, Genetics.

[17]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[18]  Sung Lee,et al.  Bio-STEER: A Semantic Web workflow tool for Grid computing in the life sciences , 2007, Future Gener. Comput. Syst..

[19]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[20]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[21]  E Rivas,et al.  A dynamic programming algorithm for RNA structure prediction including pseudoknots. , 1998, Journal of molecular biology.

[22]  S. Ferson,et al.  Quantitative Methods for Conservation Biology , 2002, Springer New York.

[23]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[24]  Richard R. Hudson,et al.  Generating samples under a Wright-Fisher neutral model of genetic variation , 2002, Bioinform..

[25]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[26]  M. P. Cummings,et al.  Genetic consequences of ecological reserve design guidelines: An empirical investigation , 2003, Conservation Genetics.

[27]  Jon A Yamato,et al.  Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. , 1995, Genetics.

[28]  Jon A Yamato,et al.  Maximum likelihood estimation of recombination rates from population data. , 2000, Genetics.

[29]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. P. Cummings,et al.  Effectiveness of Conservation Targets in Capturing Genetic Diversity , 2003 .

[31]  R. Nielsen,et al.  Distinguishing migration from isolation: a Markov chain Monte Carlo approach. , 2001, Genetics.

[32]  Sonia Sharama,et al.  Grid Computing , 2004, Lecture Notes in Computer Science.

[33]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[34]  Jon A Yamato,et al.  Maximum likelihood estimation of population growth rates based on the coalescent. , 1998, Genetics.

[35]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.