Identification of a novel NR2B-selective NMDA receptor antagonist using a virtual screening approach.

[1]  K Williams,et al.  Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. , 1993, Molecular pharmacology.

[2]  Andrew Smellie,et al.  Poling: Promoting conformational variation , 1995, J. Comput. Chem..

[3]  J. Kemp,et al.  Ro 25-6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. , 1997, The Journal of pharmacology and experimental therapeutics.

[4]  L. Coughenour,et al.  Characterization of haloperidol and trifluperidol as subtype-selective N-methyl-D-aspartate (NMDA) receptor antagonists using [3H]TCP and [3H]ifenprodil binding in rat brain membranes. , 1997, The Journal of pharmacology and experimental therapeutics.

[5]  F. Menniti,et al.  (3R,4S)-3-[4-(4-fluorophenyl)-4-hydroxypiperidin-1-yl]chroman-4,7-diol: a conformationally restricted analogue of the NR2B subtype-selective NMDA antagonist (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)- 1-propanol. , 1998, Journal of medicinal chemistry.

[6]  E. R. Whittemore,et al.  Structure-activity relationships for a series of bis(phenylalkyl)amines: potent subtype-selective inhibitors of N-methyl-D-aspartate receptors. , 1998, Journal of medicinal chemistry.

[7]  E. R. Whittemore,et al.  Structure-activity relationship for a series of 2-substituted 1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indoles: potent subtype-selective inhibitors of N-methyl-D-aspartate (NMDA) receptors. , 1999, Bioorganic & medicinal chemistry letters.

[8]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[9]  J. Hawkinson,et al.  Subtype-selective N-methyl-D-aspartate receptor antagonists: synthesis and biological evaluation of 1-(arylalkynyl)-4-benzylpiperidines. , 1999, Journal of medicinal chemistry.

[10]  Osman F. Güner,et al.  Pharmacophore perception, development, and use in drug design , 2000 .

[11]  L. Wise,et al.  Subtype-selective N-methyl-D-aspartate receptor antagonists: benzimidazalone and hydantoin as phenol replacements. , 2000, Journal of medicinal chemistry.

[12]  L. Wise,et al.  Parallel synthesis of a series of subtype-selective NMDA receptor antagonists. , 2000, Bioorganic & medicinal chemistry letters.

[13]  G. Schneider,et al.  Virtual Screening for Bioactive Molecules , 2000 .

[14]  Mark Farrant,et al.  NMDA receptor subunits: diversity, development and disease , 2001, Current Opinion in Neurobiology.

[15]  L. Meltzer,et al.  NR2B selective NMDA receptor antagonists. , 2002, Current pharmaceutical design.

[16]  P. Paoletti,et al.  Mapping the Binding Site of the Neuroprotectant Ifenprodil on NMDA Receptors , 2002, The Journal of Neuroscience.

[17]  J. Kemp,et al.  NMDA receptor pathways as drug targets , 2002, Nature Neuroscience.

[18]  E. Pinard,et al.  4-(3,4-dihydro-1H-isoquinolin-2yl)-pyridines and 4-(3,4-dihydro-1H-isoquinolin-2-yl)-quinolines as potent NR1/2B subtype selective NMDA receptor antagonists. , 2003, Bioorganic & medicinal chemistry letters.

[19]  Charles L. Brooks,et al.  Detailed analysis of grid‐based molecular docking: A case study of CDOCKER—A CHARMm‐based MD docking algorithm , 2003, J. Comput. Chem..

[20]  J. Kemp,et al.  Identification of Critical Residues in the Amino Terminal Domain of the Human NR2B Subunit Involved in the RO 25-6981 Binding Pocket , 2003, Journal of Pharmacology and Experimental Therapeutics.

[21]  Brian K. Shoichet,et al.  Virtual screening of chemical libraries , 2004, Nature.

[22]  Jon L. Wright,et al.  Subtype selective NMDA receptor antagonists: evaluation of some novel alkynyl analogues. , 2004, Bioorganic & medicinal chemistry letters.

[23]  Csilla Horváth,et al.  Oxamides as novel NR2B selective NMDA receptor antagonists. , 2004, Bioorganic & medicinal chemistry letters.

[24]  J. Pin,et al.  Virtual screening workflow development guided by the "receiver operating characteristic" curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. , 2005, Journal of medicinal chemistry.

[25]  P. Paoletti,et al.  The Micromolar Zinc-Binding Domain on the NMDA Receptor Subunit NR2B , 2005, The Journal of Neuroscience.

[26]  J. Kemp,et al.  Ionotropic and metabotropic glutamate receptor structure and pharmacology , 2005, Psychopharmacology.

[27]  J. Mccauley NR2B subtype-selective NMDA receptor antagonists: 2001 – 2004 , 2005 .

[28]  M. Kelly,et al.  Recent advances in the development of NR2B subtype-selective NMDA receptor antagonists. , 2006, Current topics in medicinal chemistry.

[29]  K. Gogas Glutamate-based therapeutic approaches: NR2B receptor antagonists. , 2006, Current opinion in pharmacology.

[30]  G. Domány,et al.  NR2B selective NMDA antagonists: the evolution of the ifenprodil-type pharmacophore. , 2006, Current topics in medicinal chemistry.

[31]  NMDA Receptor Subunits: Function and Pharmacology , 2007 .

[32]  E. V. Name,et al.  High-Potency Olfactory Receptor Agonists Discovered by Virtual High-Throughput Screening: Molecular Probes for Receptor Structure and Olfactory Function , 2008, Neuron.

[33]  M. Leonetti,et al.  Structural Basis of NR2B-Selective Antagonist Recognition by N-Methyl-d-aspartate Receptors , 2009, Molecular Pharmacology.

[34]  Hiro Furukawa,et al.  Structure of the zinc‐bound amino‐terminal domain of the NMDA receptor NR2B subunit , 2009, The EMBO journal.

[35]  J. Kew,et al.  Allosteric modulators of NR2B‐containing NMDA receptors: molecular mechanisms and therapeutic potential , 2009, British journal of pharmacology.

[36]  Gisbert Schneider,et al.  Virtual screening: an endless staircase? , 2010, Nature Reviews Drug Discovery.

[37]  F. Ng,et al.  Mapping the high‐affinity binding domain of 5‐substituted benzimidazoles to the proximal N‐terminus of the GluN2B subunit of the NMDA receptor , 2010, British journal of pharmacology.

[38]  1 PHARMACOPHORE PERCEPTION , DEVELOPMENT , AND USE IN DRUG , 2011 .