Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2

[1]  H. Hwang,et al.  Evidence for nodal superconductivity in infinite-layer nickelates , 2022, 2201.12971.

[2]  N. Brookes,et al.  Charge and Spin Order Dichotomy in NdNiO_{2} Driven by the Capping Layer. , 2021, Physical review letters.

[3]  Haiyu Lu,et al.  A broken translational symmetry state in an infinite-layer nickelate , 2021, Nature Physics.

[4]  A. Yaresko,et al.  Optical conductivity and superconductivity in highly overdoped La2−xCaxCuO4 thin films , 2021, Proceedings of the National Academy of Sciences.

[5]  Jiangfeng Yang,et al.  Impact of Cation Stoichiometry on the Crystalline Structure and Superconductivity in Nickelates , 2021, Frontiers in Physics.

[6]  H. Hwang,et al.  Insulator-to-metal crossover near the edge of the superconducting dome in Nd1−xSrxNiO2 , 2021, Physical Review Research.

[7]  Q. Gao,et al.  Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd0.8Sr0.2NiO2 , 2021, Chinese Physics Letters.

[8]  L. Kourkoutis,et al.  Doping evolution of the Mott–Hubbard landscape in infinite-layer nickelates , 2020, Proceedings of the National Academy of Sciences.

[9]  Ping Yang,et al.  Phase Diagram and Superconducting Dome of Infinite-Layer Nd_{1-x}Sr_{x}NiO_{2} Thin Films. , 2020, Physical review letters.

[10]  L. Kourkoutis,et al.  Superconducting Dome in Nd_{1-x}Sr_{x}NiO_{2} Infinite Layer Films. , 2020, Physical review letters.

[11]  S. Y. Savrasov,et al.  Lifshitz transition and frustration of magnetic moments in infinite-layer NdNiO2 upon hole doping , 2020, Physical Review B.

[12]  K. Held,et al.  Nickelate superconductors—a renaissance of the one-band Hubbard model , 2020, 2002.12230.

[13]  L. Kourkoutis,et al.  Aspects of the synthesis of thin film superconducting infinite-layer nickelates , 2020, APL Materials.

[14]  Fu-Chun Zhang,et al.  Self-doped Mott insulator for parent compounds of nickelate superconductors , 2019, Physical Review B.

[15]  B. Noheda,et al.  Tunable resistivity exponents in the metallic phase of epitaxial nickelates , 2019, Nature Communications.

[16]  T. P. Devereaux,et al.  Electronic structure of the parent compound of superconducting infinite-layer nickelates , 2019, Nature Materials.

[17]  R. Greene,et al.  The Strange Metal State of the Electron-Doped Cuprates , 2019, 1905.04998.

[18]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[19]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[20]  A. P. Mackenzie,et al.  Similarity of Scattering Rates in Metals Showing T-Linear Resistivity , 2013, Science.

[21]  S. Hayden,et al.  Anomalous Criticality in the Electrical Resistivity of La2–xSrxCuO4 , 2009, Science.

[22]  N. Hussey,et al.  Phenomenology of the normal state in-plane transport properties of high-Tc cuprates , 2008, 0804.2984.

[23]  M. Hayward,et al.  Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride , 2003 .

[24]  M. Hayward,et al.  Sodium Hydride as a Powerful Reducing Agent for Topotactic Oxide Deintercalation: Synthesis and Characterization of the Nickel(I) Oxide LaNiO2 , 1999 .

[25]  R. Friend,et al.  Cation effects in doped La2CuO4 superconductors , 1998, Nature.

[26]  Kimura,et al.  Insulator-to-Metal Crossover in the Normal State of La2-xSrxCuO 4 Near Optimum Doping. , 1996, Physical review letters.

[27]  Uchida,et al.  Universal superconductor-insulator transition and Tc depression in Zn-substituted high-Tc cuprates in the underdoped regime. , 1996, Physical review letters.

[28]  W. F. Peck,et al.  Scaling of the temperature dependent Hall effect in La2-xSrxCuO4. , 1994, Physical review letters.

[29]  W. F. Peck,et al.  Systematic evolution of temperature-dependent resistivity in La2-xSrxCuO4. , 1992, Physical review letters.

[30]  Uchida,et al.  Superconductor-to-nonsuperconductor transition in (La1-xSrx)2CuO4 as investigated by transport and magnetic measurements. , 1989, Physical review. B, Condensed matter.

[31]  K. Lee,et al.  Infinite-layer LaNiO 2 : Ni 1 + is , 2022 .