On exponential ill-conditioning and internal layer behavior

In the limit of small diffusivity, the internal layer behavior associated with the initial-boundary value problems for a viscous shock equation and a reaction diffusion equation is analyzed. As a result of the occurrence of exponentially small eigenvalues for the linearized problems, the steady state internal layer solutions are shown to very sensitive to small perturbations. For the time dependent problems, the small eigenvalues give rise to exponentially slow internal layer motion. Accurate numerical methods are used to compute the steady state internal layer solutions and the slow internal layer motion. The relationship between the viscous shock problem and some exponentially ill-conditioned linear singular perturbation problems is discussed.

[1]  E. Harrell The band-structure of a one-dimensional, periodic system in a scaling limit , 1979 .

[2]  B. Matkowsky Singular perturbations, stochastic differential equations and applications , 1980 .

[3]  Joseph B. Keller,et al.  Hill's equation with a large potential , 1985 .

[4]  D. Ludwig Persistence of Dynamical Systems under Random Perturbations , 1975 .

[5]  C. Knessl,et al.  A variational approach to nonlinear singularly perturbed boundary-value problems , 1987 .

[6]  Michael J. Ward,et al.  On the exponentially slow motion of a viscous shock , 1995 .

[7]  B. Matkowsky,et al.  Eigenvalues of the Fokker–Planck Operator and the Approach to Equilibrium for Diffusions in Potential Fields , 1981 .

[8]  R. O'Malley,et al.  Boundary Layer Problems Exhibiting Resonance , 1970 .

[9]  Gunilla Kreiss,et al.  Convergence to steady state of solutions of Burger's equation , 1986 .

[10]  Adriana Bohé,et al.  Free layers in a singularly perturbed boundary value problem , 1990 .

[11]  Avner Friedman,et al.  Asymptotic behavior of the principal eigenfunction for a singularly perturbed Dirichlet problem , 1978 .

[12]  M. J. Ward,et al.  Multiple steady-state solutions in a multijunction semiconductor device , 1991 .

[13]  Uri M. Ascher,et al.  Conditioning of the steady state semiconductor device problem , 1989 .

[14]  Robert E. O'Malley,et al.  Supersensitive Boundary Value Problems , 1993 .

[15]  de Ppn Pieter Groen,et al.  The nature of resonance in a singular perturbation problem of turning point type , 1980 .

[16]  M. Ward Eliminating Indeterminacy in Singularly Perturbed Boundary Value Problems with Translation Invariant Potentials , 1992 .

[17]  F. Howes,et al.  Nonlinear Singular Perturbation Phenomena: Theory and Applications , 1984 .

[18]  J. Carr,et al.  Metastable patterns in solutions of ut = ϵ2uxx − f(u) , 1989 .

[19]  Bernard J. Matkowsky,et al.  The Exit Problem: A New Approach to Diffusion Across Potential Barriers , 1979 .

[20]  Jack K. Hale,et al.  Slow-motion manifolds, dormant instability, and singular perturbations , 1989 .

[21]  Robert D. Russell,et al.  Collocation Software for Boundary-Value ODEs , 1981, TOMS.

[22]  H. Kreiss,et al.  Resonance for singular perturbation problems , 1981 .

[23]  A Numerical Method for Singular Perturbation Problems with Turning Points , 1985 .

[24]  F. A. Howes,et al.  Nonlinear Singular Perturbation Phenomena , 1984 .

[25]  Michael J. Ward,et al.  On the Asymptotic and Numerical Analyses of Exponentially III‐Conditioned Singularly Perturbed Boundary Value Problems , 1995 .

[26]  Bernard J. Matkowsky,et al.  On Boundary Layer Problems Exhibiting Resonance , 1975 .

[27]  U. Ascher,et al.  A collocation solver for mixed order systems of boundary value problems , 1979 .