Intergraular fracture behavior of an Al-3at.%Mg solid solution alloy under the viscous glide creep condition

[1]  Jian-Sheng Wang,et al.  High temperature creep and fracture properties of a class I solid solution alloy: Cu-2.7 at.% Sn , 1986 .

[2]  C. Lea,et al.  Magnesium diffusion, surface segregation and oxidation in Al-Mg alloys , 1984 .

[3]  Tadao Watanabe Grain boundary sliding and stress concentration during creep , 1983 .

[4]  M. Yoo,et al.  Crack and cavity nucleation at interfaces during creep , 1983 .

[5]  W. Nix Introduction to the viewpoint set on creep cavitation , 1983 .

[6]  Tadahisa Nakamura,et al.  The effects of applied stress on the intergranular phosphorus segregation in a chromium steel , 1981 .

[7]  T. Langdon,et al.  Creep and substructure formation in an Al-5% Mg solid solution alloy , 1981 .

[8]  V. Vítek,et al.  Structure-dependent intergranular segregation of phosphorus in austenite in a Ni-Cr steel , 1978 .

[9]  E. Kovács-Csetényi,et al.  Study of the loss of magnesium in an AlMgSi alloy , 1977 .

[10]  Hiroshi Oikawa,et al.  Interdiffusion in CuSn solid solutions. confirmation of anomalously large kirkendall effect , 1975 .

[11]  H. Oikawa,et al.  Creep Mechanism of AI-Mg Alloys at High Temperatures , 1975 .

[12]  J. Lendvai,et al.  Investigation of Mg loss during heat treatments in an AlMgSi alloy , 1975 .

[13]  M. Otsuka,et al.  Mechanism of High Temperature Creep of Aluminum- Magnesium Solid Solution Alloys , 1972 .

[14]  W. Smeltzer Oxidation of An Aluminum‐3 Per Cent Magnesium Alloy in the Temperature Range 200°–550°C , 1958 .

[15]  R. D. Gifkins A mechanism for the formation of intergranular cracks when boundary sliding occurs , 1956 .